
Data structures and libraries

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

Árangursrík forritun og lausn verkefna

School of Computer Science

Reykjavík University

http://ru.is/td
http://ru.is

Today we’re going to cover

• Basic data types

• Big integers

• Why we need data structures

• Data structures you already know

• Sorting and searching

• Using bitmasks to represent sets

• Common applications of the data structures

• Augmenting binary search trees

• Representing graphs

2

Basic data types

• You should all be familiar with the basic data types:

• bool: a boolean (true/false)

• char: an 8-bit signed integer (often used to represent characters
with ASCII)

• short: a 16-bit signed integer
• int: a 32-bit signed integer
• long long: a 64-bit signed integer

• float: a 32-bit floating-point number
• double: a 64-bit floating-point number
• long double: a 128-bit floating-point number

• string: a string of characters

3

Basic data types

Type Bytes Min value Max value
bool 1
char 1 -128 127
short 2 -32768 32767
int 4 -2148364748 2147483647
long long 8 -9223372036854775808 9223372036854775807

n −28n−1 28n−1 − 1

Type Bytes Min value Max value
unsigned char 1 0 255
unsigned short 2 0 65535
unsigned int 4 0 4294967295
unsigned long long 8 0 18446744073709551615

n 0 28n − 1

Type Bytes Min value Max value Precision
float 4 ≈ −3.4× 1038 ≈ 3.4× 1038 ≈ 7 digits
double 8 ≈ −1.7× 10308 ≈ 1.7× 10308 ≈ 14 digits
long double 16 ≈ −1.1××104932 ≈ 1.1× 104932 ≈ 18 digits

4

Big integers

• What if we need to represent and do computations with very large
integers, i.e. something that doesn’t fit in a long long

• Simple idea: Store the integer as a string

• But how do we perform arithmetic on a pair of strings?

• We can use the same algorithms as we learned in elementary school
• Addition: Add digit-by-digit, and maintain the carry
• Subtraction: Similar to addition
• Multiplication: Long multiplication
• Division: Long division
• Modulo: Long division

5

Example problem: Simple Addition

• https://open.kattis.com/problems/simpleaddition

6

Why do we need data structures?

• Sometimes our data needs to be organized in a way that allows one
or more of
• Efficient querying
• Efficient inserting
• Efficient deleting
• Efficient updating

• Sometimes we need a better way to represent our data
• How do we represent large integers?
• How do we represent graphs?

• Data structures help us achieve those things

7

Data structures you’ve seen before

• Static arrays

- int arr[10]

• Dynamic arrays

- vector<int>

• Linked lists

- list<int>

• Stacks

- stack<int>

• Queues

- queue<int>

• Priority queues

- priority_queue<int>

• Sets

- set<int>

• Maps

- map<int, int>

• Usually it’s best to use the standard library implementations
• Almost surely bug-free and fast
• We don’t need to write any code

• Sometimes we need our own implementation
• When we want more flexibility
• When we want to customize the data structure

8

Data structures you’ve seen before

• Static arrays - int arr[10]
• Dynamic arrays - vector<int>
• Linked lists - list<int>
• Stacks - stack<int>
• Queues - queue<int>
• Priority queues - priority_queue<int>
• Sets - set<int>
• Maps - map<int, int>

• Usually it’s best to use the standard library implementations
• Almost surely bug-free and fast
• We don’t need to write any code

• Sometimes we need our own implementation
• When we want more flexibility
• When we want to customize the data structure

8

Data structures you’ve seen before

• Static arrays - int arr[10]
• Dynamic arrays - vector<int>
• Linked lists - list<int>
• Stacks - stack<int>
• Queues - queue<int>
• Priority queues - priority_queue<int>
• Sets - set<int>
• Maps - map<int, int>

• Usually it’s best to use the standard library implementations
• Almost surely bug-free and fast
• We don’t need to write any code

• Sometimes we need our own implementation
• When we want more flexibility
• When we want to customize the data structure

8

Sorting and searching

• Very common operations:
• Sorting an array

- sort(arr.begin(), arr.end())

• Searching an unsorted array

- find(arr.begin(), arr.end(), x)

• Searching a sorted array

- lower_bound(arr.begin(), arr.end(), x)

• Again, usually in the standard library

• We’ll need different versions of binary search later which need
custom code, but lower_bound is enough for now

9

Sorting and searching

• Very common operations:
• Sorting an array - sort(arr.begin(), arr.end())
• Searching an unsorted array - find(arr.begin(), arr.end(), x)
• Searching a sorted array - lower_bound(arr.begin(), arr.end(), x)

• Again, usually in the standard library

• We’ll need different versions of binary search later which need
custom code, but lower_bound is enough for now

9

Representing sets

• We have a small (n ≤ 30) number of items

• We label them with integers in the range 0, 1, . . . , n − 1

• We can represent sets of these items as a 32-bit integer

• The ith item is in the set represented by the integer x if the ith bit
in x is 1

• Example:
• We have the set {0, 3, 4}
• int x = (1<<0) | (1<<3) | (1<<4);

10

Representing sets

• Empty set:

0

• Single element set:

1<<i

• The universe set (i.e. all elements):

(1<<n)-1

• Union of sets:

x|y

• Intersection of sets:

x&y

• Complement of a set:

~x & ((1<<n)-1)

11

Representing sets

• Check if an element is in the set:

if (x & (1<<i)) {
// yes

} else {
// no

}

12

Representing sets

• Why do this instead of using set<int>?

• Very lightweight representation

• All subsets of the n elements can be represented by integers in the
range 0 . . . 2n − 1

• Allows for easily iterating through all subsets (we’ll see this later)

• Allows for easily using a set as an index of an array (we’ll see this
later)

13

Applications of Arrays and Linked Lists

• Too many to list

• Most problems require storing data, usually in an array

14

Applications of Stacks

• Processing events in a last-in first-out order

• Simulating recursion

• Depth-first search in a graph

• Reverse a sequence

• Matching brackets

• And a lot more

15

Example problem: Backspace

• https://open.kattis.com/problems/backspace

16

Applications of Queues

• Processing events in a first-in first-out order

• Breadth-first search in a graph

• And a lot more

17

Applications of Priority Queues

• Processing events in order of priority

• Finding a shortest path in a graph

• Some greedy algorithms

• And a lot more

18

Applications of Sets

• Keep track of distinct items

• Have we seen an item before?

• If implemented as a binary search tree:
• Find the successor of an element (the smallest element that is

greater than the given element)
• Count how many elements are less than a given element
• Count how many elements are between two given elements
• Find the kth largest element

• And a lot more

19

Applications of Maps

• Associating a value with a key

• As a frequency table

• As a memory when we’re doing Dynamic Programming (later)

• And a lot more

20

Augmenting Data Structures

• Sometimes we can store extra information in our data structures to
gain more functionality

• Usually we can’t do this to data structures in the standard library

• Need our own implementation that we can customize

• Example: Augmenting binary search trees

21

Augmenting Binary Search Trees

• We have a binary search
tree and want to efficiently:
• Count number of

elements < x

• Find the kth smallest
element

• Naive method is to go
through all vertices, but
that is slow: O(n)

33

15

10

5

20

18

47

38

36

34 37

39

51

49

22

Augmenting Binary Search Trees

• Idea: In each vertex store
the size of the subtree

• This information can be
maintained when we
insert/delete elements
without increasing time
complexity

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

23

Augmenting Binary Search Trees

• Count number of elements
< 38
• Search for 38 in the tree
• Count the vertices that

we pass by that are less
than x

• When we are at a vertex
where we should go
right, get the size of the
left subtree and add it to
our count

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

24

Augmenting Binary Search Trees

• Count number of elements
< 38
• Search for 38 in the tree
• Count the vertices that

we pass by that are less
than x

• When we are at a vertex
where we should go
right, get the size of the
left subtree and add it to
our count

• Time complexity O(log n)

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

25

Augmenting Binary Search Trees

• Find kth smallest element
• We’re on a vertex whose

left subtree is of size m

• If k = m+ 1, we found it
• If k ≤ m, look for the

kth smallest element in
the left subtree

• If k > m + 1, look for
the k −m − 1st smallest
element in the right
subtree

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

26

Augmenting Binary Search Trees

• Find kth smallest element
• We’re on a vertex whose

left subtree is of size m

• If k = m+ 1, we found it
• If k ≤ m, look for the

kth smallest element in
the left subtree

• If k > m + 1, look for
the k −m − 1st smallest
element in the right
subtree

• Example: k = 11

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

27

Representing graphs

• There are many types of graphs:
• Directed vs. undirected
• Weighted vs. unweighted
• Simple vs. non-simple

• Many ways to represent graphs

• Some special graphs (like trees) have special representations

• Most commonly used (general) representations:
1. Adjacency list
2. Adjacency matrix
3. Edge list

28

Adjacency list

0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2

vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(3);
adj[3].push_back(2);

0

1 2

3

29

Adjacency matrix

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

bool adj[4][4];
adj[0][1] = true;
adj[0][2] = true;
adj[1][0] = true;
adj[1][2] = true;
adj[2][0] = true;
adj[2][1] = true;
adj[2][3] = true;
adj[3][2] = true;

0

1 2

3

30

Edge list

0, 1
0, 2
1, 2
2, 3

vector<pair<int, int> > edges;
edges.push_back(make_pair(0, 1));
edges.push_back(make_pair(0, 2));
edges.push_back(make_pair(1, 2));
edges.push_back(make_pair(2, 3));

0

1 2

3

31

Efficiency

Adjacency list Adjacency matrix Edge list
Storage O(|V | + |E |) O(|V |2) O(|E |)
Add vertex O(1) O(|V |2) O(1)
Add edge O(1) O(1) O(1)
Remove vertex O(|E |) O(|V |2) O(|E |)
Remove edge O(|E |) O(1) O(|E |)
Query: are u, v adjacent? O(|V |) O(1) O(|E |)

• Different representations are good for different situations

32

Example problem: Grandpa Bernie

• https://open.kattis.com/problems/grandpabernie

33

