Data structures

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon
Árangursrík forritun og lausn verkefna
School of Computer Science
Reykjavík University

Today we're going to cover

- Review the Union-Find data structure, and look at applications
- Study range queries
- Quick look at Square Root Decomposition
- Learn about Segment Trees

Union-Find

- We have n items
- Maintains a collection of disjoint sets
- Each of the n items is in exactly one set
- items $=\{1,2,3,4,5,6\}$
- collections $=\{1,4\},\{3,5,6\},\{2\}$
- collections $=\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$
- Supports two operations efficiently: find(x) and union(x, y).

Union-Find

- items $=\{1,2,3,4,5,6\}$
- collections $=\{1,4\},\{3,5,6\},\{2\}$
- find (x) returns a representative item from the set that x is in
- find(1) $=1$
- find(4) = 1
- find $(3)=5$
- find(5) $=5$
- find(6) $=5$
- find(2) $=2$
- a and b are in the same set if and only if find(a) $==$ find (b)

Union-Find

- items $=\{1,2,3,4,5,6\}$
- collections $=\{1,4\},\{3,5,6\},\{2\}$
- union(x, y) merges the set containing x and the set containing y together.
- union (4, 2)
- collections $=\{1,2,4\},\{3,5,6\}$
- union (3, 6)
- collections $=\{1,2,4\},\{3,5,6\}$
- union(2, 6)
- collections $=\{1,2,3,4,5,6\}$

Union-Find implementation

- Quick Union with path compression
- Extremely simple implementation
- Extremely efficient

```
struct union_find {
    vector<int> parent;
    union_find(int n) {
        parent = vector<int>(n);
        for (int i = 0; i < n; i++) {
        parent[i] = i;
        }
    }
    // find and union
};
```


Union-Find implementation

```
// find and union
int find(int x) {
    if (parent[x] == x) {
        return x;
    } else {
        parent[x] = find(parent[x]);
        return parent[x];
    }
}
void unite(int x, int y) {
    parent[find(x)] = find(y);
}
```


Union-Find implementation (short)

- If you're in a hurry...

```
#define MAXN 1000
int p[MAXN];
int find(int x) {
    return p[x] == x ? x : p [x] = find(p [x]); }
void unite(int x, int y) { p[find(x)] = find(y); }
for (int i = 0; i < MAXN; i++) p[i] = i;
```


Union-Find applications

- Union-Find maintains a collection of disjoint sets
- When are we dealing with such collections?
- Most common example is in graphs

Disjoint sets in graphs

Disjoint sets in graphs

- items $=\{1,2,3,4,5,6,7\}$

Disjoint sets in graphs

- items $=\{1,2,3,4,5,6,7\}$
- collections $=\{1,4,7\},\{2\},\{3,5,6\}$

Disjoint sets in graphs

- items $=\{1,2,3,4,5,6,7\}$
- collections $=\{1,4,7\},\{2\},\{3,5,6\}$
- union(2, 5)

Disjoint sets in graphs

- items $=\{1,2,3,4,5,6,7\}$
- collections $=\{1,4,7\},\{2,3,5,6\}$

Disjoint sets in graphs

- items $=\{1,2,3,4,5,6,7\}$
- collections $=\{1,4,7\},\{2,3,5,6\}$
- union(6, 2)

Disjoint sets in graphs

- items $=\{1,2,3,4,5,6,7\}$
- collections $=\{1,4,7\},\{2,3,5,6\}$

Example problem: Where's My Internet??

- https://open.kattis.com/problems/wheresmyinternet

Range queries

- We have an array A of size n
- Given i, j, we want to answer:
- $\max (A[i], A[i+1], \ldots, A[j-1], A[j])$
- $\min (A[i], A[i+1], \ldots, A[j-1], A[j])$
- $\operatorname{sum}(A[i], A[i+1], \ldots, A[j-1], A[j])$
- We want to answer these queries efficiently, i.e. without looking through all elements
- Sometimes we also want to update elements

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 0 & 7 & 8 & 5 & 9 & 3 \\
\hline
\end{array}
$$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$
- $\operatorname{sum}(2,5)$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$
- $\operatorname{sum}(2,5)=29$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$
- $\operatorname{sum}(2,5)=29$
- $\operatorname{sum}(2,2)$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$
- $\operatorname{sum}(2,5)=29$
- $\operatorname{sum}(2,2)=7$

Range sum on a static array

- Let's look at range sums on a static array (i.e. updating is not supported)

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$
- $\operatorname{sum}(2,5)=29$
- $\operatorname{sum}(2,2)=7$
- How do we support these queries efficiently?

Range sum on a static array

- Simplification: only support queries of the form $\operatorname{sum}(0, j)$
- Notice that $\operatorname{sum}(i, j)=\operatorname{sum}(0, j)-\operatorname{sum}(0, i-1)$

1	0	7	8	5	9	3

$$
=
$$

1	0	7	8	5	9	3

1	0	7	8	5	9	3

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1						

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1					

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8				

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16			

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21		

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

- $O(n)$ time to preprocess
- $O(1)$ time each query
- Can we support updating efficiently?

Range sum on a static array

- So we're only interested in prefix sums
- But there are only n of them...
- Just compute them all once in the beginning

1	0	7	8	5	9	3
1	1	8	16	21	30	33

- $O(n)$ time to preprocess
- $O(1)$ time each query
- Can we support updating efficiently? No, at least not without modification

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	8	5	9	3

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)$

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	8	5	9	3

- $\operatorname{sum}(0,6)=33$
- update $(3,-2)$

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	-2	5	9	3

- $\operatorname{sum}(0,6)=33$
- update(3, -2)

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	-2	5	9	3

- $\operatorname{sum}(0,6)=33$
- update $(3,-2)$
- $\operatorname{sum}(0,6)$

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	-2	5	9	3

- $\operatorname{sum}(0,6)=33$
- update $(3,-2)$
- $\operatorname{sum}(0,6)=23$

Range sum on a dynamic array

- What if we want to support:
- sum over a range
- updating an element

1	0	7	-2	5	9	3

- $\operatorname{sum}(0,6)=33$
- update $(3,-2)$
- $\operatorname{sum}(0,6)=23$
- How do we support these queries efficiently?

First attempt: Buckets

- Group values into buckets of size k
- E.g. $k=2$:

1	0	7	8	5	9	3

First attempt: Buckets

- Group values into buckets of size k
- E.g. $k=2$:

1	0	7	8	5	9	3

First attempt: Buckets

- Group values into buckets of size k
- E.g. $k=2$:

1	0	7	8	5	9	3

- There are roughly n / k buckets

First attempt: Buckets

- Group values into buckets of size k
- E.g. $k=2$:

1	0	7	8	5	9	3

- There are roughly n / k buckets
- Store the sum of elements inside each bucket:

First attempt: Buckets

- Group values into buckets of size k
- E.g. $k=2$:

1	0	7	8	5	9	3

- There are roughly n / k buckets
- Store the sum of elements inside each bucket:

1	15	14	3

Buckets: Updating

1	15	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket

Buckets: Updating

1	15	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$

Buckets: Updating

1	15	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$

Buckets: Updating

1	0	7	-2	5	9	3

1	15	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$

Buckets: Updating

1	0	7	-2	5	9	3

1	15	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$

Buckets: Updating

1	0	7	-2	5	9	3

1	15	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$

Buckets: Updating

1	0	7	-2	5	9	3

1	5	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$

Buckets: Updating

1	0	7	-2	5	9	3

1	5	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$
- Time complexity: $O(k)$

Buckets: Updating

1	0	7	-2	5	9	3

1	5	14	3

- Updating is easy:
- change the array element
- recompute corresponding bucket
- update $(3,-2)$
- Time complexity: $O(k)$
- Easy to do in $O(1)$, but doesn't really matter (we'll see why)

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)$

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)$

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)=0+15+14=29$

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)=0+15+14=29$
- What about time complexity?

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)=0+15+14=29$
- What about time complexity?
- Only have to go inside at most two buckets (each end)

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)=0+15+14=29$
- What about time complexity?
- Only have to go inside at most two buckets (each end)
- Have to consider at most n / k buckets

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)=0+15+14=29$
- What about time complexity?
- Only have to go inside at most two buckets (each end)
- Have to consider at most n / k buckets
- In total roughly $n / k+2 k$

Buckets: Querying

1	0	7	8	5	9	3

1	15	14	3

- Again we want to query over a range
- When a bucket is contained in the range, use the stored sum for the bucket
- This (sometimes) allows us to "jump" over intervals of size k
- query $(1,5)=0+15+14=29$
- What about time complexity?
- Only have to go inside at most two buckets (each end)
- Have to consider at most n / k buckets
- In total roughly $n / k+2 k$
- Time complexity: $O(n / k+k)$

Buckets: Choosing k

- Now we have a data structure that supports:
- Updating in $O(k)$
- Querying in $O(n / k+k)$
- What k to pick?

Buckets: Choosing k

- Now we have a data structure that supports:
- Updating in $O(k)$
- Querying in $O(n / k+k)$
- What k to pick?
- Time complexity is minimized for $k=\sqrt{n}$:
- Updating in $O(\sqrt{n})$
- Querying in $O(n / \sqrt{n}+\sqrt{n})=O(\sqrt{n})$

Buckets: Choosing k

- Now we have a data structure that supports:
- Updating in $O(k)$
- Querying in $O(n / k+k)$
- What k to pick?
- Time complexity is minimized for $k=\sqrt{n}$:
- Updating in $O(\sqrt{n})$
- Querying in $O(n / \sqrt{n}+\sqrt{n})=O(\sqrt{n})$
- Also known as square root decomposition, and is a very powerful technique

Example problem: Supercomputer

- https://open.kattis.com/problems/supercomputer

Range queries

- Now we know how to do these queries in $O(\sqrt{n})$
- May be too slow if n is large and many queries
- Can we do better?

Second attempt: Segment Tree

1	0	7	8	5	9	3

Second attempt: Segment Tree

1	0	7	8	5	9	3

Second attempt: Segment Tree

- Each vertex contains the sum of some segment of the array

Segment Tree - Code

```
struct segment_tree {
    segment_tree *left, *right;
    int from, to, value;
    segment_tree(int from, int to)
        : from(from), to(to), left(NULL), right(NULL), value(0) { }
};
segment_tree* build(const vector<int> &arr, int l, int r) {
    if (l > r) return NULL;
    segment_tree *res = new segment_tree(l, r);
    if (l == r) {
        res->value = arr[l];
    } else {
        int m = (l + r) / 2;
        res->left = build(arr, l, m);
        res->right = build(arr, m + 1, r);
        if (res->left != NULL) res->value += res->left->value;
        if (res->right != NULL) res->value += res->right->value;
    }
    return res;
}
```


Querying a Segment Tree

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 0 & 7 & 8 & 5 & 9 & 3 \\
\hline
\end{array}
$$

Querying a Segment Tree

1	0	7	8	5	9	3

- $\operatorname{sum}(0,5)$

Querying a Segment Tree

1	0	7	8	5	9	3

- $\operatorname{sum}(0,5)$

Querying a Segment Tree

1	0	7	8	5	9	3

- $\operatorname{sum}(0,5)$

Querying a Segment Tree

1	0	7	8	5	9	3

- $\operatorname{sum}(0,5)$

Querying a Segment Tree

- $\operatorname{sum}(0,5)=16+14=30$

Querying a Segment Tree

1	0	7	8	5	9	3

- $\operatorname{sum}(0,5)=16+14=30$
- We only need to consider a few vertices to get the entire range

Querying a Segment Tree

1	0	7	8	5	9	3

- $\operatorname{sum}(0,5)=16+14=30$
- We only need to consider a few vertices to get the entire range
- But how do we find them?

Querying a Segment Tree

- $\operatorname{sum}(0,5)$

Querying a Segment Tree - Code

```
int query(segment_tree *tree, int l, int r) {
    if (tree == NULL) return 0;
    if (l <= tree->from && tree->to <= r) return tree->value;
    if (tree->to < l) return 0;
    if (r < tree->from) return 0;
    return query(tree->left, l, r) + query(tree->right, l, r);
}
```


Updating a Segment Tree

Updating a Segment Tree

- update $(3,5)$

Updating a Segment Tree - Code

```
int update(segment_tree *tree, int i, int val) {
    if (tree == NULL) return 0;
    if (tree->to < i) return tree->value;
    if (i < tree->from) return tree->value;
    if (tree->from == tree->to && tree->from == i) {
        tree->value = val;
    } else {
        tree->value = update(tree->left, i, val) + update(tree->right, i, val);
    }
    return tree->value;
}
```


Segment Tree

- Now we can
- build a Segment Tree
- query a range
- update a single value

Segment Tree

- Now we can
- build a Segment Tree
- query a range
- update a single value
- But how efficient are these operations?

Segment Tree

- Now we can
- build a Segment Tree in $O(n)$
- query a range
- update a single value
- But how efficient are these operations?

Segment Tree

- Now we can
- build a Segment Tree in $O(n)$
- query a range in $O(\log n)$
- update a single value
- But how efficient are these operations?

Segment Tree

- Now we can
- build a Segment Tree in $O(n)$
- query a range in $O(\log n)$
- update a single value in $O(\log n)$
- But how efficient are these operations?

Segment Tree

- Now we can
- build a Segment Tree in $O(n)$
- query a range in $O(\log n)$
- update a single value in $O(\log n)$
- But how efficient are these operations?
- Trivial to use Segment Trees for min, max, gcd, and other similar operators, basically the same code

Segment Tree

- Now we can
- build a Segment Tree in $O(n)$
- query a range in $O(\log n)$
- update a single value in $O(\log n)$
- But how efficient are these operations?
- Trivial to use Segment Trees for min, max, gcd, and other similar operators, basically the same code
- Also possible to update a range of values in $O(\log n)$ (Google for Segment Trees with Lazy Propagation if you want to learn more)

Example problem: Supercomputer

- https://open.kattis.com/problems/supercomputer

