
Dynamic Programming

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

Árangursrík forritun og lausn verkefna

School of Computer Science

Reykjavík University

http://ru.is/td
http://ru.is

Today we’re going to cover

• Dynamic Programming

2

What is dynamic programming?

• A problem solving paradigm

• Similar in some respects to both divide and conquer and
backtracking

• Divide and conquer recap:
• Split the problem into independent subproblems
• Solve each subproblem recursively
• Combine the solutions to subproblems into a solution for the given

problem

• Dynamic programming:
• Split the problem into overlapping subproblems
• Solve each subproblem recursively
• Combine the solutions to subproblems into a solution for the given

problem
• Don’t compute the answer to the same subproblem more than once

3

Dynamic programming formulation

1. Formulate the problem in terms of smaller versions of the problem
(recursively)

2. Turn this formulation into a recursive function

3. Memoize the function (remember results that have been computed)

4

Dynamic programming formulation

map<problem, value> memory;

value dp(problem P) {
if (is_base_case(P)) {

return base_case_value(P);
}

if (memory.find(P) != memory.end()) {
return memory[P];

}

value result = some value;
for (problem Q in subproblems(P)) {

result = combine(result, dp(Q));
}

memory[P] = result;
return result;

}

5

The Fibonacci sequence

The first two numbers in the Fibonacci sequence are 1 and 1. All other
numbers in the sequence are defined as the sum of the previous two
numbers in the sequence.

• Task: Find the nth number in the Fibonacci sequence
• Let’s solve this with dynamic programming

1. Formulate the problem in terms of smaller versions of the problem
(recursively)

fibonacci(1) = 1

fibonacci(2) = 1

fibonacci(n) = fibonacci(n − 2) + fibonacci(n − 1)

6

The Fibonacci sequence

2. Turn this formulation into a recursive function

int fibonacci(int n) {
if (n <= 2) {

return 1;
}

int res = fibonacci(n - 2) + fibonacci(n - 1);

return res;
}

7

The Fibonacci sequence

• What is the time complexity of this?

Exponential, almost O(2n)

fib(6)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

fib(5)

fib(3)

fib(1) fib(2)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

8

The Fibonacci sequence

• What is the time complexity of this? Exponential, almost O(2n)

fib(6)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

fib(5)

fib(3)

fib(1) fib(2)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

8

The Fibonacci sequence

3. Memoize the function (remember results that have been computed)

map<int, int> mem;

int fibonacci(int n) {
if (n <= 2) {

return 1;
}

if (mem.find(n) != mem.end()) {
return mem[n];

}

int res = fibonacci(n - 2) + fibonacci(n - 1);

mem[n] = res;
return res;

}

9

The Fibonacci sequence

int mem[1000];
for (int i = 0; i < 1000; i++)

mem[i] = -1;

int fibonacci(int n) {
if (n <= 2) {

return 1;
}

if (mem[n] != -1) {
return mem[n];

}

int res = fibonacci(n - 2) + fibonacci(n - 1);

mem[n] = res;
return res;

}

10

The Fibonacci sequence

• What is the time complexity now?

• We have n possible inputs to the function: 1, 2, . . . , n.

• Each input will either:
• be computed, and the result saved
• be returned from memory

• Each input will be computed at most once

• Time complexity is O(n × f), where f is the time complexity of
computing an input if we assume that the recursive calls are
returned directly from memory (O(1))

• Since we’re only doing constant amount of work to compute the
answer to an input, f = O(1)

• Total time complexity is O(n)

11

Maximum sum

• Given an array arr[0], arr[1], . . . , arr[n − 1] of integers, find the
interval with the highest sum

-15 8 -2 1 0 6 -3

• The maximum sum of an interval in this array is 13

• But how do we solve this in general?
• Easy to loop through all ≈ n2 intervals, and calculate their sums, but

that is O(n3)

• We could use our static range sum trick to get this down to O(n2)

• Can we do better with dynamic programming?

12

Maximum sum

• Given an array arr[0], arr[1], . . . , arr[n − 1] of integers, find the
interval with the highest sum

-15 8 -2 1 0 6 -3

• The maximum sum of an interval in this array is 13

• But how do we solve this in general?
• Easy to loop through all ≈ n2 intervals, and calculate their sums, but

that is O(n3)

• We could use our static range sum trick to get this down to O(n2)

• Can we do better with dynamic programming?

12

Maximum sum

• Given an array arr[0], arr[1], . . . , arr[n − 1] of integers, find the
interval with the highest sum

-15 8 -2 1 0 6 -3

• The maximum sum of an interval in this array is 13

• But how do we solve this in general?
• Easy to loop through all ≈ n2 intervals, and calculate their sums, but

that is O(n3)

• We could use our static range sum trick to get this down to O(n2)

• Can we do better with dynamic programming?

12

Maximum sum

• First step is to formulate this recursively

• Let max_sum(i) be the maximum sum interval in the range 0, . . . , i

• Base case: max_sum(0) = max(0, arr [0])

• What about max_sum(i)?

• What does max_sum(i − 1) return?

• Is it possible to combine solutions to subproblems with smaller i into
a solution for i?

• At least it’s not obvious...

13

Maximum sum

• Let’s try changing perspective

• Let max_sum(i) be the maximum sum interval in the range
0, . . . , i , that ends at i

• Base case: max_sum(0) = arr [0]

• max_sum(i) = max(arr [i], arr [i] +max_sum(i − 1))

• Then the answer is just max 0≤i<n { max_sum(i) }

14

Maximum sum

• Next step is to turn this into a function

int arr[1000];

int max_sum(int i) {
if (i == 0) {

return arr[i];
}

int res = max(arr[i], arr[i] + max_sum(i - 1));

return res;
}

15

Maximum sum

• Final step is to memoize the function

int arr[1000];
int mem[1000];
bool comp[1000];
memset(comp, 0, sizeof(comp));

int max_sum(int i) {
if (i == 0) {

return arr[i];
}
if (comp[i]) {

return mem[i];
}

int res = max(arr[i], arr[i] + max_sum(i - 1));

mem[i] = res;
comp[i] = true;
return res;

}

16

Maximum sum

• Then the answer is just the maximum over all interval ends

int maximum = 0;
for (int i = 0; i < n; i++) {

maximum = max(maximum, best_sum(i));
}

printf("%d\n", maximum);

17

Maximum sum

• If you want to find the maximum sum interval in multiple arrays,
remember to clear the memory in between

18

Maximum sum

• What about time complexity?

• There are n possible inputs to the function

• Each input is processed in O(1) time, assuming recursive calls are
O(1)

• Time complexity is O(n)

19

Coin change

• Given an array of coin denominations d0, d1, . . . , dn−1, and some
amount x : What is minimum number of coins needed to represent
the value x?

• Remember the greedy algorithm for Coin change?

• It didn’t always give the optimal solution, and sometimes it didn’t
even give a solution at all...

• What about dynamic programming?

20

Coin change

• First step: formulate the problem recursively

• Let opt(i , x) denote the minimum number of coins needed to
represent the value x if we’re only allowed to use coin denominations
d0, . . . , di

• Base case: opt(i , x) =∞ if x < 0

• Base case: opt(i , 0) = 0

• Base case: opt(−1, x) =∞

• opt(i , x) = min

{
1+ opt(i , x − di)

opt(i − 1, x)

21

Coin change

int INF = 100000;
int d[10];

int opt(int i, int x) {
if (x < 0) return INF;
if (x == 0) return 0;
if (i == -1) return INF;

int res = INF;
res = min(res, 1 + opt(i, x - d[i]));
res = min(res, opt(i - 1, x));

return res;
}

22

Coin change

int INF = 100000;
int d[10];
int mem[10][10000];
memset(mem, -1, sizeof(mem));

int opt(int i, int x) {
if (x < 0) return INF;
if (x == 0) return 0;
if (i == -1) return INF;

if (mem[i][x] != -1) return mem[i][x];

int res = INF;
res = min(res, 1 + opt(i, x - d[i]));
res = min(res, opt(i - 1, x));

mem[i][x] = res;
return res;

}

23

Coin change

• Time complexity?

• Number of possible inputs are n × x

• Each input will be processed in O(1) time, assuming recursive calls
are constant

• Total time complexity is O(n × x)

24

Coin change

• How do we know which coins the optimal solution used?

• We can store backpointers, or some extra information, to trace
backwards through the states

• See example...

25

Longest increasing subsequence

• Given an array a[0], a[1], . . . , a[n− 1] of integers, what is the length
of the longest increasing subsequence?

• First, what is a subsequence?

• If we delete zero or more elements from a, then we have a
subsequence of a

• Example: a = [5, 1, 8, 1, 9, 2]

• [5, 8, 9] is a subsequence

• [1, 1] is a subsequence

• [5, 1, 8, 1, 9, 2] is a subsequence

• [] is a subsequence

• [8, 5] is not a subsequence

• [10] is not a subsequence

26

Longest increasing subsequence

• Given an array a[0], a[1], . . . , a[n− 1] of integers, what is the length
of the longest increasing subsequence?

• An increasing subsequence of a is a subsequence of a such that the
elements are in (strictly) increasing order

• [5, 8, 9] and [1, 8, 9] are the longest increasing subsequences of
a = [5, 1, 8, 1, 9, 2]

• How do we compute the length of the longest increasing
subsequence?

• There are 2n subsequences, so we can go through all of them

• That would result in an O(n2n) algorithm, which can only handle
n ≤ 23

• What about dynamic programming?

27

Longest increasing subsequence

• Let lis(i) denote the length of the longest increasing subsequence of
the array a[0], . . ., a[i]

• Base case: lis(0) = 1

• What about lis(i)?

• We have the same issue as in the maximum sum problem, so let’s
try changing perspective

28

Longest increasing subsequence

• Let lis(i) denote the length of the longest increasing subsequence of
the array a[0], . . ., a[i], that ends at i

• Base case: we don’t need one

• lis(i) = max(1,maxj<i s.t. a[j]<a[i]{1+ lis(j)})

29

Longest increasing subsequence

int a[1000];
int mem[1000];
memset(mem, -1, sizeof(mem));

int lis(int i) {
if (mem[i] != -1) {

return mem[i];
}

int res = 1;
for (int j = 0; j < i; j++) {

if (a[j] < a[i]) {
res = max(res, 1 + lis(j));

}
}

mem[i] = res;
return res;

}

30

Longest increasing subsequence

• And then the longest increasing subsequence can be found by
checking all endpoints:

int mx = 0;
for (int i = 0; i < n; i++) {

mx = max(mx, lis(i));
}

printf("%d\n", mx);

31

Longest increasing subsequence

• Time complexity?

• There are n possible inputs

• Each input is computed in O(n) time, assuming recursive calls are
O(1)

• Total time complexity is O(n2)

• This will be fast enough for n ≤ 10 000, much better than the brute
force method!

32

Longest common subsequence

• Given two strings (or arrays of integers) a[0], . . . , a[n − 1] and b[0],
. . . , b[m − 1], find the length of the longest subsequence that they
have in common.

• a ="bananinn"

• b ="kaninan"

• The longest common subsequence of a and b, "aninn", has length 5

33

Longest common subsequence

• Let lcs(i , j) be the length of the longest common subsequence of the
strings a[0], . . . , a[i] and b[0], . . . , b[j]

• Base case: lcs(−1, j) = 0

• Base case: lcs(i ,−1) = 0

• lcs(i , j) = max


lcs(i , j − 1)
lcs(i − 1, j)
1+ lcs(i − 1, j − 1) if a[i] = b[j]

34

Longest common subsequence

string a = "bananinn",
b = "kaninan";

int mem[1000][1000];
memset(mem, -1, sizeof(mem));

int lcs(int i, int j) {
if (i == -1 || j == -1) {

return 0;
}
if (mem[i][j] != -1) {

return mem[i][j];
}

int res = 0;
res = max(res, lcs(i, j - 1));
res = max(res, lcs(i - 1, j));

if (a[i] == b[j]) {
res = max(res, 1 + lcs(i - 1, j - 1));

}

mem[i][j] = res;
return res;

}

35

Longest common subsequence

• Time complexity?

• There are n ×m possible inputs

• Each input is processed in O(1), assuming recursive calls are O(1)

• Total time complexity is O(n ×m)

36

DP over bitmasks

• Remember the bitmask representation of subsets?

• Each subset of n elements are mapped to an integer in the range 0,
. . . , 2n − 1

• This makes it easy to do dynamic programming over subsets

37

Traveling salesman problem

• We have a graph of n vertices, and a cost ci,j between each pair of
vertices i , j . We want to find a cycle through all vertices in the
graph so that the sum of the edge costs in the cycle is minimal.

• This problem is NP-Hard, so there is no known deterministic
polynomial time algorithm that solves it

• Simple to do in O(n!) by going through all permutations of the
vertices, but that’s too slow if n > 11

• Can we go higher if we use dynamic programming?

38

Traveling salesman problem

• Without loss of generality, assume we start and end the cycle at
vertex 0

• Let tsp(i ,S) represent the cheapest way to go through all vertices in
the graph and back to vertex 0, if we’re currently at vertex i and
we’ve already visited the vertices in the set S

• Base case: tsp(i , all vertices) = ci,0

• Otherwise tsp(i ,S) = min j 6∈S { ci,j + tsp(j ,S ∪ {j}) }

39

Traveling salesman problem

const int N = 20;
const int INF = 100000000;
int c[N][N];
int mem[N][1<<N];
memset(mem, -1, sizeof(mem));

int tsp(int i, int S) {
if (S == ((1 << N) - 1)) {

return c[i][0];
}
if (mem[i][S] != -1) {

return mem[i][S];
}

int res = INF;
for (int j = 0; j < N; j++) {

if (S & (1 << j))
continue;

res = min(res, c[i][j] + tsp(j, S | (1 << j)));
}

mem[i][S] = res;
return res;

} 40

Traveling salesman problem

• Then the optimal solution can be found as follows:

printf("%d\n", tsp(0, 1<<0));

41

Traveling salesman problem

• Time complexity?

• There are n × 2n possible inputs

• Each input is computed in O(n) assuming recursive calls are O(1)

• Total time complexity is O(n22n)

• Now n can go up to about 20

42

Traveling salesman problem

43

