Dynamic Programming

& Kattis

Bjarki Agast Gudmundsson
Témas Ken Magnusson

Arangursrik forritun og lausn verkefna

School of Computer Science

Reykjavik University

http://ru.is/td
http://ru.is

Today we're going to cover

e Dynamic Programming

What is dynamic programming?

A problem solving paradigm

e Similar in some respects to both divide and conquer and
backtracking

Divide and conquer recap:

e Split the problem into independent subproblems

e Solve each subproblem recursively

e Combine the solutions to subproblems into a solution for the given
problem

e Dynamic programming:
e Split the problem into overlapping subproblems
e Solve each subproblem recursively
e Combine the solutions to subproblems into a solution for the given
problem
e Don't compute the answer to the same subproblem more than once

Dynamic programming formulation

1. Formulate the problem in terms of smaller versions of the problem
(recursively)

2. Turn this formulation into a recursive function

3. Memoize the function (remember results that have been computed)

Dynamic programming formulation

map<problem, value> memory;

value dp(problem P) {
if (is_base_case(P)) {
return base_case_value(P);

if (memory.find(P) != memory.end()) {

return memory [P];

value result = some value;
for (problem Q in subproblems(P)) {
result = combine(result, dp(Q));

memory [P] = result;

return result;

The Fibonacci sequence

The first two numbers in the Fibonacci sequence are 1 and 1. All other
numbers in the sequence are defined as the sum of the previous two
numbers in the sequence.

e Task: Find the nth number in the Fibonacci sequence
e Let's solve this with dynamic programming

1. Formulate the problem in terms of smaller versions of the problem
(recursively)

fibonacci(1)
fibonacci(2)
fibonacci(n) = fibonacci(n — 2) + fibonacci(n — 1)

=1
=1

The Fibonacci sequence

2. Turn this formulation into a recursive function
int fibonacci(int n) {
if (n <= 2) {
return 1;

int res = fibonacci(n - 2) + fibonacci(n - 1);

return res;

The Fibonacci sequence

e What is the time complexity of this?

fib(6)
/ \
fib(4) fib(5)
/ N\ RN
fib(2) fib(3) fib(3) fib(4)
\ N
fib(1) fib(2) fib(1) fib(2) fib(2) fib(3)

fib(1) fib(2)

The Fibonacci sequence

e What is the time complexity of this? Exponential, almost O(2")

fib(6)
/ \
fib(4) fib(5)
/ N\ RN
fib(2) fib(3) fib(3) fib(4)
\ N
fib(1) fib(2) fib(1) fib(2) fib(2) fib(3)

fib(1) fib(2)

The Fibonacci sequence

3. Memoize the function (remember results that have been computed)

map<int, int> mem;
int fibonacci(int n) {

if (n <= 2) {

return 1;

if (mem.find(n) != mem.end()) {
return mem[n];
int res = fibonacci(n - 2) + fibonacci(n - 1);

mem[n] = res;

return res;

The Fibonacci sequence

int mem[1000];
for (int i = 0; i < 1000; i++)

mem[i] = -1;

int fibonacci(int n) {
if (n <= 2) {

return 1;

}

if (mem[n] !'= -1) {
return mem[n];

}

int res = fibonacci(n - 2) + fibonacci(n - 1);

mem[n] = res;

return res;

10

The Fibonacci sequence

e What is the time complexity now?

e We have n possible inputs to the function: 1, 2, ..., n.
e Each input will either:

e be computed, and the result saved
e be returned from memory

e Each input will be computed at most once

e Time complexity is O(n x f), where f is the time complexity of
computing an input if we assume that the recursive calls are
returned directly from memory (O(1))

e Since we're only doing constant amount of work to compute the
answer to an input, f = O(1)

e Total time complexity is O(n)

11

Maximum sum

e Given an array arr[0], arr[1], ..., arr[n — 1] of integers, find the
interval with the highest sum

15| 8

2]1]0]6

_3‘

12

Maximum sum

e Given an array arr[0], arr[1], ..., arr[n — 1] of integers, find the
interval with the highest sum

1582106

_3‘

e The maximum sum of an interval in this array is 13

12

Maximum sum

e Given an array arr[0], arr[1], ..., arr[n — 1] of integers, find the
interval with the highest sum

1582106

_3‘

e The maximum sum of an interval in this array is 13
e But how do we solve this in general?

e Easy to loop through all &~ n? intervals, and calculate their sums, but
that is O(n®)

e We could use our static range sum trick to get this down to O(n?)

e Can we do better with dynamic programming?

12

Maximum sum

e First step is to formulate this recursively
e Let max sum(/) be the maximum sum interval in the range 0, ...,/
e Base case: max_sum(0) = max(0, arr[0])

e What about max_sum(/)?
e What does max sum(/ — 1) return?

e Is it possible to combine solutions to subproblems with smaller i into
a solution for i?

e At least it's not obvious...

13

Maximum sum

Let's try changing perspective

Let max sum(/) be the maximum sum interval in the range
0,...,i, that ends at i

e Base case: max_sum(0) = arr[0]

e max_sum(/) = max(arr[i], arr[i] + max_sum(i — 1))

Then the answer is just max g<j<n, { max_sum(/) }

14

Maximum sum

e Next step is to turn this into a function
int arr[1000];
int max_sum(int i) {
if (1 ==0) {
return arr[il;

int res = max(arr[i], arr[i] + max_sum(i - 1));

return res;

15

Maximum sum

e Final step is to memoize the function

int arr[1000];

int mem[1000];

bool comp[1000];

memset (comp, 0, sizeof (comp));

int max_sum(int i) {
if (i == 0) {
return arr[i];

}
if (comp[i]) {
return mem[i];

¥
int res = max(arr[i], arr[i] + max_sum(i - 1));
mem[i] = res;

comp[i] = true;
return res;

16

Maximum sum

e Then the answer is just the maximum over all interval ends

int maximum = O;
for (int i = 0; 1 < n; i++) {

maximum = max(maximum, best_sum(i));

printf ("%d\n", maximum) ;

17

Maximum sum

e If you want to find the maximum sum interval in multiple arrays,
remember to clear the memory in between

18

Maximum sum

What about time complexity?

e There are n possible inputs to the function

Each input is processed in O(1) time, assuming recursive calls are

o(1)
Time complexity is O(n)

19

e Given an array of coin denominations dg, d1, ..., d,_1, and some
amount x: What is minimum number of coins needed to represent
the value x?

e Remember the greedy algorithm for Coin change?

e |t didn't always give the optimal solution, and sometimes it didn't
even give a solution at all...

e What about dynamic programming?

20

e First step: formulate the problem recursively

e Let opt(/, x) denote the minimum number of coins needed to
represent the value x if we're only allowed to use coin denominations
do, ..., d;

e Base case: opt(i,x) = oo if x <0
e Base case: opt(i,0) =0

e Base case: opt(—1,x) = o0

1+ opt(i,x — d;)
opt(i — 1, x)

e opt(i,x) = min {

21

Coin change

int INF = 100000;
int d[10];

int opt(int i, int x) {
if (x < 0) return INF;
if (x == 0) return O;
if (i == -1) return INF;

int res = INF;
res = min(res, 1 + opt(i, x - d[i]));

res = min(res, opt(i - 1, x));

return res;

22

Coin change

int INF = 100000;
int d[10];
int mem[10] [10000];

memset (mem, -1, sizeof (mem));

int opt(int i, int x) {
if (x < 0) return INF;

if (x == 0) return 0;
if (i == -1) return INF;
if (mem[i] [x] != -1) return mem[i] [x];

int res = INF;
res = min(res, 1 + opt(i, x - d[il));

res = min(res, opt(i - 1, x));

mem[i] [x] = res;

return res;

23

Time complexity?

Number of possible inputs are n x x

Each input will be processed in O(1) time, assuming recursive calls
are constant

e Total time complexity is O(n x x)

24

e How do we know which coins the optimal solution used?

e We can store backpointers, or some extra information, to trace
backwards through the states

e See example...

25

Longest increasing subsequence

e Given an array a[0], a[1], ..., a[n — 1] of integers, what is the length
of the longest increasing subsequence?

e First, what is a subsequence?

o |f we delete zero or more elements from a, then we have a
subsequence of a

e Example: a=15,1,8,1,9,2]

[5,8,9] is a subsequence

[1,1] is a subsequence

[5,1,8,1,9,2] is a subsequence

[] is a subsequence

[8,5] is not a subsequence

[10] is not a subsequence

26

Longest increasing subsequence

e Given an array al0], a[1], ..., a[n — 1] of integers, what is the length
of the longest increasing subsequence?

e An increasing subsequence of a is a subsequence of a such that the
elements are in (strictly) increasing order

e [5,8,9] and [1,8,9] are the longest increasing subsequences of
a=1[5,1,8,1,9,2]

e How do we compute the length of the longest increasing
subsequence?
e There are 2" subsequences, so we can go through all of them

e That would result in an O(n2") algorithm, which can only handle
n <23

e What about dynamic programming?

27

Longest increasing subsequence

Let lis(/) denote the length of the longest increasing subsequence of
the array a[0], ..., a[/]

Base case: lis(0) =1
What about lis(/)?

e We have the same issue as in the maximum sum problem, so let's
try changing perspective

28

Longest increasing subsequence

e Let lis(/) denote the length of the longest increasing subsequence of
the array a[0], ..., a[i], that ends at i

e Base case: we don't need one

o lis(/) = max(1, max;; s+. afjj<apijil +lis(j)})

29

Longest increasing subsequence

int a[1000];
int mem[1000];

memset (mem, -1, sizeof (mem));

int lis(int i) {
if (mem[i] != -1) {

return mem[i];

int res = 1;
for (int j = 0; j < i; j++) {
if (aljl < alil) {
res = max(res, 1 + 1lis(j));

}

mem[i] = res;

return res;

30

Longest increasing subsequence

e And then the longest increasing subsequence can be found by
checking all endpoints:

int mx = 0;
for (dnt i = 0; 1 < n; i++) {

mx = max(mx, lis(i));

printf("%d\n", mx);

31

Longest increasing subsequence

e Time complexity?

e There are n possible inputs

e Each input is computed in O(n) time, assuming recursive calls are
o(1)

e Total time complexity is O(n?)

e This will be fast enough for n < 10 000, much better than the brute
force method!

32

Longest common subsequence

Given two strings (or arrays of integers) a[0], ..., a[n — 1] and b[0],
..., blm — 1], find the length of the longest subsequence that they
have in common.

e 3 —"bananinn"

e b ="kaninan"

The longest common subsequence of a and b, "aninn", has length 5

33

Longest common subsequence

e Let lcs(i,j) be the length of the longest common subsequence of the
strings a[0], ..., a[i] and b[0], ..., b[j]
e Base case: les(—1,/) =0
e Base case: les(i,—1) =0
les(i,j — 1)

o les(i,j) =max ¢ les(i — 1,))
1+les(i—1,j—1) if a[i] = b[j]

34

Longest common subsequence

string a = "bananinn",
b = "kaninan";
int mem[1000] [1000] ;
memset (mem, -1, sizeof (mem));

int les(int i, int j) {

if (i==-11]j==-1{
return 0;

}

if (mem[i][j] != -1) {

return mem[i] [j];

I

int res = 0;
res = max(res, les(i, j - 1));
res = max(res, les(i - 1, j));

if (alil == b[jD) {

res = max(res, 1 + les(i - 1, j - 1));

}

mem[i] [j] = res;
return res;

35

Longest common subsequence

Time complexity?

There are n x m possible inputs

Each input is processed in O(1), assuming recursive calls are O(1)

Total time complexity is O(n x m)

36

DP over bitmasks

e Remember the bitmask representation of subsets?

e Each subset of n elements are mapped to an integer in the range 0,
L 2n—=1

e This makes it easy to do dynamic programming over subsets

37

Traveling salesman problem

e We have a graph of n vertices, and a cost ¢; j between each pair of
vertices i, j. We want to find a cycle through all vertices in the
graph so that the sum of the edge costs in the cycle is minimal.

e This problem is NP-Hard, so there is no known deterministic
polynomial time algorithm that solves it

e Simple to do in O(n!) by going through all permutations of the
vertices, but that's too slow if n > 11

e Can we go higher if we use dynamic programming?

38

Traveling salesman problem

e Without loss of generality, assume we start and end the cycle at
vertex 0

e Let tsp(/,S) represent the cheapest way to go through all vertices in

the graph and back to vertex 0, if we're currently at vertex i and
we've already visited the vertices in the set S

e Base case: tsp(i,all vertices) = ¢;o

e Otherwise tsp(i, S) = min jgs { ¢ ; + tsp(j, S U {j}) }

39

Traveling salesman problem

const int N = 20;

const int INF = 100000000;
int c[N][NI;

int mem[N] [1<<N];

memset (mem, -1, sizeof (mem));

int tsp(int i, int S) {
if (8 == ((1 << N) - 1)) {
return c[i] [0];

¥

if (mem[i][S] != -1) {
return mem[i] [S];

}

int res = INF;
for (int j = 0; j < N; j++) {
if (S & (1 << j))
continue;

res = min(res, c[il[j] + tsp(j, S | (1 << j)));
}

mem[i] [S] = res;
return res;

Traveling salesman problem

e Then the optimal solution can be found as follows:

printf ("%d\n", tsp(0, 1<<0));

a1

Traveling salesman problem

Time complexity?

There are n x 2" possible inputs

Each input is computed in O(n) assuming recursive calls are O(1)

Total time complexity is O(n?2")

e Now n can go up to about 20

42

Traveling salesman problem

BRUTE -FORCE DYNAMIC ,
SOLUTTON: PROGRAMMING SELUNG ON EBAY:
0(n1) ALGORTHMS: 0(1)
. O (nizﬂ)
STILL WORKING
ON YOUR ROUTE?
AN
-~
SHUT THE

HEW VR

43

