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Today we’re going to cover

Basics

Number Theory

Combinatorics

Game Theory
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Basics



Computer Science ⊂ Mathematics
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• Usually at least one problem that involves solving mathematically.

• Problems often require mathematical analysis to be solved efficiently.

• Using a bit of math before coding can also shorten and simplify code.
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Finding patterns and formulas

• Some problems have solutions that form a pattern.

• By finding the pattern, we solve the problem.

• Could be classified as mathematical ad-hoc problem.

• Requires mathematical intuition.

• Useful tricks:
• Solve some small instances by hand.
• See if the solutions form a pattern.

• Does the pattern involve some overlapping subproblem?
We might need to use DP.

• Knowing reoccurring identities and sequences can be helpful.

6



Finding patterns and formulas

• Some problems have solutions that form a pattern.

• By finding the pattern, we solve the problem.

• Could be classified as mathematical ad-hoc problem.

• Requires mathematical intuition.

• Useful tricks:
• Solve some small instances by hand.
• See if the solutions form a pattern.

• Does the pattern involve some overlapping subproblem?
We might need to use DP.

• Knowing reoccurring identities and sequences can be helpful.

6



Finding patterns and formulas

• Some problems have solutions that form a pattern.

• By finding the pattern, we solve the problem.

• Could be classified as mathematical ad-hoc problem.

• Requires mathematical intuition.

• Useful tricks:
• Solve some small instances by hand.
• See if the solutions form a pattern.

• Does the pattern involve some overlapping subproblem?
We might need to use DP.

• Knowing reoccurring identities and sequences can be helpful.

6



Finding patterns and formulas

• Some problems have solutions that form a pattern.

• By finding the pattern, we solve the problem.

• Could be classified as mathematical ad-hoc problem.

• Requires mathematical intuition.

• Useful tricks:
• Solve some small instances by hand.
• See if the solutions form a pattern.

• Does the pattern involve some overlapping subproblem?

We might need to use DP.

• Knowing reoccurring identities and sequences can be helpful.

6



Finding patterns and formulas

• Some problems have solutions that form a pattern.

• By finding the pattern, we solve the problem.

• Could be classified as mathematical ad-hoc problem.

• Requires mathematical intuition.

• Useful tricks:
• Solve some small instances by hand.
• See if the solutions form a pattern.

• Does the pattern involve some overlapping subproblem?
We might need to use DP.

• Knowing reoccurring identities and sequences can be helpful.

6



Finding patterns and formulas

• Some problems have solutions that form a pattern.

• By finding the pattern, we solve the problem.

• Could be classified as mathematical ad-hoc problem.

• Requires mathematical intuition.

• Useful tricks:
• Solve some small instances by hand.
• See if the solutions form a pattern.

• Does the pattern involve some overlapping subproblem?
We might need to use DP.

• Knowing reoccurring identities and sequences can be helpful.

6



Arithmetic progression

• Often we see a pattern like

2, 5, 8, 11, 14, 17, 20, . . .

• This is called a arithmetic progression.

an = an−1 + c
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Arithmetic progression

• Depending on the situation we may want to get the n-th element

an = a1 + (n − 1)c

• Or the sum over a finite portion of the progression

Sn =
n(a1 + an)

2

• Remember this one?

1+ 2+ 3+ 4+ 5+ . . .+ n =
n(n + 1)

2
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Geometric progression

• Other types of pattern we often see are geometric progressions

1, 2, 4, 8, 16, 32, 64, 128, . . .

• More generally

a, ar , ar2, ar3, ar4, ar5, ar6, . . .

an = arn−1
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Geometric progression

• Sum over a finite portion

n∑
i=0

ar i =
a(1− rn)

(1− r)

• Or from the m-th element to the n-th
n∑

i=m

ar i =
a(rm − rn+1)

(1− r)
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Little bit about logarithm

• Sometimes doing computation in logarithm can be an efficient
alternative.

• In both C++(<cmath>) and Java(java.lang.Math) we have the
natural logarithm

double log(double x);

and logarithm in base 10

double log10(double x);

• And also the exponential

double exp(double x);
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Example

• For example, what is the first power of 17 that has k digits in base
b?

• Naive solution: Iterate over powers of 17 and count the number of
digits.

• But the powers of 17 grow exponentially!

1716 > 264

• What if k = 500 (∼ 1.7 · 10615), or something larger?

• Impossible to work with the numbers in a normal fashion.

• Why not log?
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Example

• Remember, we can calculate the length of a number n in base b

with blogb(n)c+ 1.

• But how do we do this with only ln or log10?

• Change base!

logb(a) =
logd(a)
logd(b)

=
ln(a)
ln(b)

• Now we can at least count the length without converting bases
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Example

• We still have to iterate over the powers of 17, but we can do that in
log

ln(17x−1 · 17) = ln(17x−1) + ln(17)

• More generally
logb(xy) = logb(x) + logb(y)

• For division
logb(

x

y
) = logb(x)− logb(y)
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Example

• We can simplify this even more.

• The solution to our problem is in mathematical terms, finding the x

for
logb(17

x) = k − 1

• One more handy identity

logb(a
c) = c · logb(a)

• Using this identity and the ones we’ve covered, we get

x =

⌈
(k − 1) · ln(10)

ln(17)

⌉
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Base conversion

• Speaking of bases.

• What if we actually need to use base conversion?

• Simple algorithm

vector<int> toBase(int base, int val) {
vector<int> res;
while(val) {

res.push_back(val % base);
val /= base;

}
return val;

• Starts from the 0-th digit, and calculates the multiple of each power.
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Working with doubles

• Comparing doubles, sounds like a bad idea.

• What else can we do if we are working with real numbers?

• We compare them to a certain degree of precision.

• Two numbers are deemed equal of their difference is less than some
small epsilon.

const double EPS = 1e-9;

if (abs(a - b) < EPS) {
...
}
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Working with doubles

• Less than operator:

if (a < b - EPS) {
...
}

• Less than or equal:

if (a < b + EPS) {
...
}

• The rest of the operators follow.

18



Working with doubles

• This allows us to use comparison based algorithms.

• For example std::set<double>.

struct cmp {
bool operator(){double a, double b}{

return a < b - EPS;
}

};

set<double, cmp> doubleSet();

• Other STL containers can be used in similar fashion.

19
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Number Theory



Modular arithmetic

• Problem statements often end with the sentence

“... and output the answer modulo n.”

• This implies that we can do all the computation with integers
modulo n.

• The integers, modulo some n form a structure called a ring.

• Special rules apply, also loads of interesting properties.
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Modular arithmetic

Some of the allowed operations:

• Addition and subtraction modulo n

(a mod n) + (b mod n) = (a+ b mod n)

(a mod n)− (b mod n) = (a− b mod n)

• Multiplication

(a mod n)(b mod n) = (ab mod n)

• Exponentiation
(a mod n)b = (ab mod n)

• Note: We are only working with integers.
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Modular arithmetic

• What about division?

NO!

• We could end up with a fraction!

• Division with k equals multiplication with the multiplicative inverse
of k.

• The multiplicative inverse of an integer a, is the element a−1 such
that

a · a−1 = 1 (mod n)

23
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Modular arithmetic

• What about logarithm?

YES!
• But difficult.
• Basis for some cryptography such as elliptic curve, Diffie-Hellmann.

• Google “Discrete Logarithm” if you want to know more.
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Modular arithmetic

• Prime number is a positive integer greater than 1 that has no
positive divisor other than 1 and itself.

• Greatest Common Divisor of two integers a and b is the largest
number that divides both a and b.

• Least Common Multiple of two integers a and b is the smallest
integer that both a and b divide.

• Prime factor of an positive integer is a prime number that divides it.

• Prime factorization is the decomposition of an integer into its prime
factors. By the fundamental theorem of arithmetics, every integer
greater than 1 has a unique prime factorization.
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Extended Euclidean algorithm

• The Euclidean algorithm is a recursive algorithm that computes the
GCD of two numbers.

int gcd(int a, int b){
return b == 0 ? a : gcd(b, a % b);

}

• Runs in O(log2 N).

• Notice that this can also compute LCM

lcm(a, b) =
a · b

gcd(a, b)

• See Wikipedia to see how it works and for proofs.
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Extended Euclidean algorithm

• Reversing the steps of the Euclidean algorithm we get the Bézout’s
identity

gcd(a, b) = ax + by

which simply states that there always exist x and y such that the
equation above holds.

• The extended Euclidean algorithm computes the GCD and the
coefficients x and y .

• Each iteration it add up how much of b we subtracted from a and
vice versa.
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Extended Euclidean algorithm

int egcd(int a, int b, int& x, int& y) {
if (b == 0) {

x = 1;
y = 0;
return a;

} else {
int d = egcd(b, a % b, x, y);
x -= a / b * y;
swap(x, y);
return d;

}
}
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Applications

• Essential step in the RSA algorithm.

• Essential step in many factorization algorithms.

• Can be generalized to other algebraic structures.

• Fundamental tool for proofs in number theory.

• Many other algorithms for GCD

29



Primality testing

• How do we determine if a number n is a prime?

• Naive method: Iterate over all 1 < i < n and check it i | n.
• O(N)

• Better: If n is not a prime, it has a divisor ≤
√
n.

• Iterate up to
√
n instead.

• O(
√
N)

• Even better: If n is not a prime, it has a prime divisor ≤
√
n

• Iterate over the prime numbers up to
√
n.

• There are ∼ N/ ln(N) primes less N, therefore O(
√
N/ logN).
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Primality testing

• Trial division is a deterministic primality test.

• Many algorithms that are probabilistic or randomized.

• Fermat test; uses Fermat’s little theorem.

• Probabilistic algorithms that can only prove that a number is
composite such as Miller-Rabin.

• AKS primality test, the one that proved that primality testing is in P.
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Prime sieves

• If we want to generate primes, using a primality test is very
inefficient.

• Instead, our preferred method of prime generation is the sieve of
Eratosthenes.
• For all numbers from 2 to

√
n:

• If the number is not marked, iterate over every multiple of the
number up to n and mark them.

• The unmarked numbers are those that are not a multiple of any
smaller number.

• O(
√
N log logN)

Primes:
2, 3, 5, 7, 11, 13, 17, 19, 23
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Sieve of Eratosthenes

vector<int> eratosthenes(int n){
bool *isMarked = new bool[n+1];
memset(isMarked, 0, n+1);
vector<int> primes;
int i = 2;
for(; i*i <= n; ++i)

if (!isMarked[i]) {
primes.push_back(i);
for(int j = i; j <= n; j += i)

isMarked[j] = true;
}

for (; i <= n; i++)
if (!isMarked[i])

primes.push_back(i);
return primes;

}
33



Integer factorization

The fundamental theorem of arithmetic states that

• Every integer greater than 1 is a unique multiple of primes.

n = pe11 pe22 pe33 · · · p
ek
k

We can therefore store integers as lists of their prime powers.
To factor an integer n:

• Use the sieve of Eratosthenes to generate all the primes up
√
n

• Iterate over all the primes generated and check if they divide n, and
determine the largest power that divides n.
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map<int, int> factor(int N) {
vector<int> primes;
primes = eratosthenes(static_cast<int>(sqrt(N+1)));
map<int, int> factors;
for(int i = 0; i < primes.size(); ++i){

int prime = primes[i], power = 0;
while(N % prime == 0){

power++;
N /= prime;

}
if(power > 0){

factors[prime] = power;
}

}
if (N > 1) {

factors[N] = 1;
}
return factors;

}
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Integer factorization

The prime factors can be quite useful.

• The number of divisors

σ0(n) =
k∏

i=1

(e1 + 1)

• The sum of all divisors in x-th power

σm(n) =
k∏

i=1

(p(ei+1)x − 1)
(pi − 1)
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Integer factorization

• The Euler’s totient function

φ(n) = n ·
k∏

i=1

(1− p)

• Euler’s theorem, if a and n are coprime

aφ(n) = 1 (mod n)

Fermat’s theorem is a special case when n is a prime.
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Combinatorics

Combinatorics is study of countable discrete structures.

Generic enumeration problem: We are given an infinite sequence of sets
A1,A2, . . .An, . . . which contain objects satisfying a set of properties.
Determine

an := |An|

for general n.
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Basic counting

• Factorial
n! = 1 · 2 · 3 · · · n

• Binomial coefficient (
n

k

)
=

n!

k!(n − k)!

Number of ways to choose k objects from a set of n objects,
ignoring order.
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Basic counting

Properties

• (
n

k

)
=

(
n

n − k

)
• (

n

0

)
=

(
n

n

)
= 1

• (
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1
k

)
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Basic counting

Pascal triangle!
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Example

How many rectangles can be formed on a m × n grid?

• A rectangle needs 4 edges, 2 vertical and 2 horizontal.

• 2 vertical
• 2 horizontal
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How many rectangles can be formed on a m × n grid?

• A rectangle needs 4 edges, 2 vertical and 2 horizontal.

• 2 vertical
• 2 horizontal

• Number of ways we can choose 2 vertical lines(
n

2

)
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Example

How many rectangles can be formed on a m × n grid?

• A rectangle needs 4 edges, 2 vertical and 2 horizontal.

• 2 vertical
• 2 horizontal

• Number of ways we can choose 2 horizontal lines(
m

2

)
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Example

How many rectangles can be formed on a m × n grid?

• A rectangle needs 4 edges, 2 vertical and 2 horizontal.

• 2 vertical
• 2 horizontal

• Total number of ways we can form a rectangle(
n

2

)(
m

2

)
=

n!m!

(n − 2)!(m − 2)!2!2!

=
n(n − 1)m(m − 1)

4
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Multinomial

What if we have many objects with the same value?

• Number of permutations on n objects, where ni is the number of
objects with the i-th value.(Multinomial)(

n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · · nk !

• Number of way to choose k objects from a set of n objects with,
where each value can be chosen more than once.(

n + k − 1
k

)
=

(n + k − 1)!
k!(n − 1)!
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Example

How many different ways can we divide k identical balls into n boxes?

• Same as number of nonnegative solutions to

x1 + x2 + . . .+ xn = k

• Let’s imagine we have a bit string consisting only of 1 of length
n + k − 1

1 1 1 1 1 1 1 . . . 1︸ ︷︷ ︸
n+k−1

45



Example

How many different ways can we divide k identical balls into n boxes?

• Same as number of nonnegative solutions to

x1 + x2 + . . .+ xn = k

• Let’s imagine we have a bit string consisting only of 1 of length
n + k − 1

1 1 1 1 1 1 1 . . . 1︸ ︷︷ ︸
n+k−1

45



Example

How many different ways can we divide k identical balls into n boxes?

• Same as number of nonnegative solutions to

x1 + x2 + . . .+ xn = k

• Let’s imagine we have a bit string consisting only of 1 of length
n + k − 1

1 1 1 1 1 1 1 . . . 1︸ ︷︷ ︸
n+k−1

45



Example

• Choose n − 1 bits to be swapped for 0

1 . . . 1 0 1 . . . 1 0 . . . 0 1 . . . 1

• Then total number of 1 will be k , each 1 representing an each
element, and separated into n groups

• Number of ways to choose the bits to swap(
n + k − 1
n − 1

)
=

(
n + k − 1

k

)
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Example

How many different lattice paths are there from (0, 0) to (n,m)?

(0, 0)

(n,m)

1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 3 6 10 15 21 28

1 4 10 20 35 56 84

1 5 15 35 70 126 210

1 6 21 56 126 252 462

• There is 1 path to (0, 0)

• There is 1 path to (1, 0) and (0, 1)

• Paths to (1, 1) is the sum of number
of paths to (0, 1) and (1, 0).
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Catalan

What if we are not allowed to cross the main diagonal?

(0, 0)

(n,m)

• The number of paths from (0, 0) to
(n,m)

Cn =
1

n + 1

(
2n
n

)

• Cn are known as Catalan numbers.

• Many problems involve solutions given
by the Catalan numbers.
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Catalan

• Number of different ways n + 1 factors can be completely
parenthesized.

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

• Number of stack sortable permutations of length n.

• Number of different triangulations convex polygon with n + 2 sides

• Number of full binary trees with n + 1 leaves.

• And aloot more.
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Fibonacci

The Fibonacci sequence is defined recursively as

f1 = 1

f2 = 1

fn = fn−1 + fn−2

Already covered how to calculate fn in O(N) time with dynamic
programming.
But we can do even better.
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Fibonacci as matrix

The Fibonacci sequence can be represented by a vectors(
fn+2

fn+1

)
=

(
1 1
1 0

)(
fn+1

fn

)

Or simply as a matrix (
1 1
1 0

)n

=

(
fn+1 fn
fn fn−1

)

Using fast exponentiaton, we can calculate fn in O(logN) time.
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Fibonacci as matrix

Any linear recurrence

an = c1an−1 + c2an−2 . . . ckan−k

can be expressed in the same way
an+1

an
...

an−k

 =


c1 c2 . . . ck
1 0 . . . 0
...

...
0 0 . . . 0




an
an−1
...

an−k−1



With a recurrence relation defined as a linear function of the k preceding
terms the running time will be O(k3 logN).
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Game theory

Game theory is the study of strategic decision making, but in competitive
programming we are mostly interested in combinatorial games.

Example:

• There is a pile of k matches.

• Player can remove 1, 2 or 3 from the pile and alternate on moves.

• The player who removes the last match wins.

• There are two players, and the first player starts.

• Assuming that both players play perfectly, who wins?
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Example

We can analyse these types of games with backward induction.

We call a state N-position if it is a winning state for the next player to
move, and P-position if it is a winning position for the previous player.

• All terminal positions are P-positions.

• If every reachable state from the current one is a N-position then
the current state is a P-position.

• If at least one P-position can be reached from the current one, then
the current state is a N-position.

• A position is a P-position if all reachable states form the current one
are N position.
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Example

Let’s analyse our previous game.

• The terminal position is a P-position.

• The positions reachable from the terminal positions are N-positions.

• Position 4 can only reach N-positions, therefore a P position.

• The next 3 positions can reach the P-position 4, therefore they are
N-positions.

• And so on.

0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

P N N N P N N N P N N N P . . .
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Game theory

We can see a clear pattern of the N and P positions in the previous
game. – Easy to prove that a position is P if x ≡ 0 (mod 4).

• Many games can be analyzed this way.

• Not only one dimensional games.

• What if there are n piles instead of 1?

• What if we can remove 1, 3 or 4?
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The game called Nim

• There are n piles, each containing xi chips.

• Player can remove from exactly one pile, and can remove any
number of chips.

• The player who removes the last match wins.

• There are two players, and the first player starts and they alternate
on moves.

• Assuming that both players play perfectly, who wins?
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The game called Nim

Nim can be analyzed with N and P position.

• Not trivial to generalize over n piles.

• Luckily someone has already done that for us.

Buton’s theorem states that a position (x1, x2, . . . , xn) in Nim is a
P-position if and only if the xor over the number of chips is 0.
This theorem extends to other sums of combinatorial games!
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