
Introduction

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

http://ru.is/td
http://ru.is


Welcome

▶ T-414-AFLV, Árangursrík forritun og lausn verkefna

▶ Bjarki Ágúst Guðmundsson, bjarkig12@ru.is
▶ Tómas Ken Magnússon, tomasm12@ru.is

▶ Magnús Már Halldórsson filling in today

2



Goal

▶ Given a problem, we want to
– solve it efficiently
– by using algorithms and data structures,
– convert our solution into a program,
– do it as quickly as possible (under pressure)
– and do it correctly (without bugs)

▶ This course will exercise this process

3



How?

▶ Study common types of problems
▶ Show common applications of algorithms and data
structures you already know from

– Reiknirit (the algorithms course)
– Gagnaskipan (the data structures course)

▶ Introduce other common algorithms and data
structures

▶ Go over some commonly used theory
▶ Practice problem solving
▶ Practice programming
▶ More practice
▶ More practice

4



Course book

▶ Competitive Programming by Steven Halim
▶ First edition can be downloaded from the book
homepage:

▶ https://sites.google.com/site/stevenhalim/

▶ We will loosely follow the first edition
▶ There’s also a 2nd and 3rd edition (both should be
compatible with our course), but they need to be
ordered online

5



Piazza

▶ Piazza can be used to ask questions
▶ https://piazza.com/ru.is/fall2014/t414aflv/home

6



Course schedule
▶ Preliminary course schedule

Class no. Date Topics Activities
1 01.12 Introduction
2 02.12 Data structures and libraries
3 03.12 Data structures
4 04.12 Problem solving paradigms

5 05.12 Greedy algorithms
Dynamic programming

Problem session I

06.12
07.12 Hand in problem sets from week 1

6 08.12 Dynamic programming
7 09.12 Unweighted graphs
8 10.12 Graphs
9 11.12 Network flow
10 12.12 Mathematics Problem session II

13.12
14.12 Hand in problem sets from week 2

11 15.12 Strings
12 16.12 Geometry
13 17.12 Final exam

18.12
19.12 Hand in problem sets from week 3

Hand in bonus problems

7



Problem sets

▶ Each class covers a topic
▶ A talk about the topic before noon
▶ After noon you get a set of problems about that topic
▶ Groups of up to three people can discuss the
problems, but each individual must write and hand in
their own code

– We will check for similar submissions, and take action if we
think that people are cheating

8



Problem sets

▶ Each problem set has 5 problems
▶ Each problem is assigned some amount of points
▶ To get a perfect score you need to get at least a
certain amount of points

▶ The grade follows linearly from the number of points
you get

– If you get 85% of the required points, your grade is 8.5
– If you get 50% of the required points, your grade is 5.0
– If you get 100% or more of the required points, your grade

is 10.0

▶ The deadline for a problem set is the following
Sunday

▶ Except for Friday’s problem set, which is handed in
the Sunday next week

9



Bonus problems

▶ Each problem set contains two challenging bonus
problems

▶ Deadline for all bonus problems is the same as the
deadline for the last problem set

▶ Bonus problems are only taken into account if the
student would pass the course before they’re taken
into account

10



Late handins, partial grading

▶ Late handins will not be accepted
– There should be more than enough time for each problem

set

▶ Solutions will not be partially graded

11



Problem sessions

▶ On each Friday is a programming contest
▶ Problems will be related to topics covered so far
▶ Teams of up to three people compete together
▶ Each team can only use a single computer

12



Final exam

▶ Will be held on the last Friday
▶ Similar to a problem set from all the topics
▶ Will be very fair

13



Course evaluation

Problem sets 70%
Problem sessions 10%
Final exam 20%
Bonus problems 20%
Total 120%

▶ Remember that bonus problems are only considered
if the student passes the course, and is only used to
raise the final grade

▶ A final grade greater than 10 will be reduced down to
10

14



Let’s get started

Introduction



The problems
▶ Typical programming contest problems
▶ Usually consists of

– Problem description
– Input description
– Output description
– Example input/output
– A time limit in seconds
– A memory limit in bytes

▶ You are asked to write a program that solves the
problem for all valid inputs

▶ The program must not exceed time or memory limits

16



Example problem
Problem description
Write a program that multiplies pairs of integers.

Input description
Input starts with one line containing an integer T, where
1 ≤ T ≤ 100, denoting the number of test cases. Then T
lines follow, each containing a test case. Each test case
consists of two integers A,B, where −220 ≤ A,B ≤ 220,
separated by a single space.

Output description
For each test case, output one line containing the value of
A× B.

17



Example problem

Sample input Sample output

4
3 4
13 0
1 8
100 100

12
0
8
10000

18



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

int A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct?

No!

▶ What if A = B = 220?

The output is 0...

19



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

int A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct?

No!
▶ What if A = B = 220?

The output is 0...

19



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

int A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct?

No!

▶ What if A = B = 220?

The output is 0...

19



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

int A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct?

No!

▶ What if A = B = 220? The output is 0...

19



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

int A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct? No!
▶ What if A = B = 220? The output is 0...

19



Example solution

▶ When A = B = 220, the answer should be 240

▶ Too big to fit in a 32-bit integer, so it overflows
▶ Using 64-bit integers should be enough

20



Example solution

▶ When A = B = 220, the answer should be 240

▶ Too big to fit in a 32-bit integer, so it overflows

▶ Using 64-bit integers should be enough

20



Example solution

▶ When A = B = 220, the answer should be 240

▶ Too big to fit in a 32-bit integer, so it overflows
▶ Using 64-bit integers should be enough

20



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

long long A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct?

Yes!

21



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

long long A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct?

Yes!

21



Example solution
#include <iostream>
using namespace std;

int main() {
int T;
cin >> T;

for (int t = 0; t < T; t++) {

long long A, B;
cin >> A >> B;

cout << A * B << endl;
}

return 0;
}

▶ Is this solution correct? Yes!

21



Automatic judging
▶ The problems will be available on Kattis:
▶ https://ru.kattis.com/

▶ Kattis is an online judge, similar to Mooshak
▶ You will submit your solutions to Kattis, and get
immediate feedback about the solution

▶ You can submit in any of the supported languages:
– C
– C++
– Java
– Python 2
– Python 3
– C#
– and others

22



Judge verdicts
▶ Feedback about solutions is limited
▶ You will (usually) receive one of:

– Accepted
– Wrong Answer
– Compile Error
– Run Time Error
– Time Limit Exceeded
– Memory Limit Exceeded

▶ We will not reveal which test cases Kattis runs on
your solution

23



Tips
▶ There are a couple of tips and guidelines you can
keep in mind towards becoming a more effective
programmer and better problem solver

24



Tip 0: Faster typing
▶ Become a faster/better typist
▶ Don’t let your fingers be the limiting factor of solving
problems quickly

▶ Good problem solvers have simple solutions; they
don’t have to type as much, but it’s still important to
type in quickly

▶ TypeRacer is a fun and effective way to practice:
▶ http://play.typeracer.com/

25



Tip 1: Quickly classify problems
▶ Practice quickly identifying problem types

▶ Rate of appearance of different problem types in
recent ICPC Asia Regional problem sets (which
usually consists of 7-11 problems):

Category Sub-Category Frequency
Ad Hoc Straightforward 1-2
Ad Hoc Simulation 0-1

Complete Search Iterative 0-1
Complete Search Backtracking 0-1
Divide & Conquer 0-1

Greedy Classic 0
Greedy Original 1

Dynamic Programming Classic 0
Dynamic Programming Original 1-3

Graph 1-2
Mathematics 1-2

String Processing 1
Computational Geometry 1

Harder Problems 0-1
26



Tip 2: Do Algorithm Analysis
▶ When solving a problem, our solution has to be fast
enough and can not use too much memory

▶ We also want our solution to be as simple as possible
▶ We can use Algorithm Analysis to determine if a
solution will run within the time limit

▶ Rule of thumb: 109 operations per second

▶ We want to sort n ≤ 106 integers, and we have 3
seconds.

– Can we use a simple O(n2) bubble sort?
– What about a more complex O(n logn) merge sort?

▶ We want to sort n ≤ 103 integers, and we have 3
seconds.

– Can we now use the simple O(n2) bubble sort?

▶ Always go for the simplest solution that will pass the
time limit

27



Tip 2: Do Algorithm Analysis
▶ You should practice doing approximate mental
calculations

▶ Rule of thumb: 210 ≈ 103

▶ Sometimes you have a solution that you’re not sure is
correct

▶ Try to prove it’s correct!
▶ Even if you don’t manage to prove or disprove it, you
will probably get a better understanding of the
problem

28



Tip 2: Do Algorithm Analysis

n Slowest Accepted Algorithm Example
≤ 10 O(n!),O(n6) Enumerating a permutation
≤ 15 O(2n × n2) DP TSP
≤ 20 O(2n),O(n5) DP + bitmask technique
≤ 50 O(n4) DP with 3 dimensions + O(n) loop, choosing nCk = 4

≤ 102 O(n3) Floyd Warshall’s
≤ 103 O(n2) Bubble/Selection/Insertion sort
≤ 105 O(n log2 n) Merge sort, building a Segment tree
≤ 106 O(n),O(log2 n),O(1) Usually, contest problems have n ≤ 106 (to read input)

29



Tip 3: Master Programming Languages

▶ You should know your programming language like the
back of your hand

▶ This includes your programming language’s library
– C++’s Standard Template Library
– The Java Class Library

▶ If it’s already implemented in the standard library, you
usually don’t need to implement it yourself

30



Tip 4: Test your solution

▶ You want to make sure your solution is correct and
runs within the time limit

▶ Or you already know it’s wrong, but don’t know why

▶ Try to break your solution by finding a counterexample
(an input for which your solution gives incorrect
output, or takes too long to compute an answer)

▶ Try edge cases, large inputs, ...

31



Tip 5: Practice and more practice

▶ Problem solving and programming skills come with
practice

▶ Lots of online judges that let you solve problems from
past contests

▶ Some of these online judges also hold contests
frequently

▶ UVa, Codeforces, TopCoder, Kattis, ...

32



Ad Hoc problems



Ad Hoc problems

▶ The simplest kind of problem
▶ Just do what the problem description tells you
▶ Straightforward or a simulation
▶ Time limit is not an issue
▶ Sometimes long and misleading problem descriptions
▶ Sometimes tricky edge cases
▶ Complex problems can be hard to implement

34



Problem: Cost Cutting

Company XYZ have been badly hit by recession and is taking a
lot of cost cutting measures. Some of these measures include
giving up office space, going open source, reducing incentives,
cutting on luxuries and issuing pink slips.

They have got three (3) employees working in the accounts
department and are going to lay-off two (2) of them. After a
series of meetings, they have decided to dislodge the person
who gets the most salary and the one who gets the least. This
is usually the general trend during crisis like this. You will be
given the salaries of these 3 employees working in the accounts
department. You have to find out the salary of the person who
survives.

35



Problem: Cost Cutting

Input
The first line of input is an integer T (T < 20) that indicates the
number of test cases. Each case consists of a line with 3
distinct positive integers. These 3 integers represent the
salaries of the three employees. All these integers will be in the
range [1000, 10000].

Output
For each case, output the case number followed by the salary
of the person who survives.

36



Problem: Cost Cutting

Sample input Sample output

3
1000 2000 3000
3000 2500 1500
1500 1200 1800

Case 1: 2000
Case 2: 2500
Case 3: 1500

37



Cost Cutting: Solution
#include <cstdio>
#include <algorithm>
using namespace std;

int main() {
int T;
scanf("%d", &T);

for (int t = 0; t < T; t++) {

int salary[3];
scanf("%d", &salary[0]);
scanf("%d", &salary[1]);
scanf("%d", &salary[2]);

sort(salary, salary + 3);

printf("Case %d: %d\n", t + 1, salary[1]);
}

return 0;
}

38



Problem: SMS Typing

Cell phones have become an essential part of modern life. In
addition to making voice calls, cell phones can be used to send
text messages, which are known as SMS for short. Unlike
computer keyboards, most cell phones have limited number of
keys. To accommodate all alphabets, letters are compacted into
single key. Therefore, to type certain characters, a key must be
repeatedly pressed until that character is shown on the display
panel.

In this problem we are interested in finding out the number of
times keys on a cell phone must be pressed to type a particular
message.

39



Problem: SMS Typing
In this problem we will assume that the key pad of our cell
phone is arranged as follows.

abc def
ghi jkl mno
pqrs tuv wxyz

<SP>

In the above grid each cell represents one key. Here <SP>
means a space. In order to type the letter ‘a’, we must press
that key once, however to type ‘b’ the same key must be
repeatedly pressed twice and for ‘c’ three times. In the same
manner, one key press for ‘d’, two for ‘e’ and three for ‘f’. This is
also applicable for the remaining keys and letters. Note that it
takes a single press to type a space.

40



Problem: SMS Typing

Input
The first line of input will be a positive integer T where T
denotes the number of test cases. T lines will then follow each
containing only spaces and lower case letters. Each line will
contain at least 1 and at most 100 characters.

Output
For every case of input there will be one line of output. It will
first contain the case number followed by the number of key
presses required to type the message of that case. Look at the
sample output for exact formatting.

41



Problem: SMS Typing

Sample input Sample output

2
welcome to ulab
good luck and have fun

Case #1: 29
Case #2: 41

42



SMS Typing: Solution
#include <cstdio>
#include <iostream>
#include <string>
using namespace std;

string keys[12] = {
"", "abc", "def",
"ghi", "jkl", "mno",
"pqrs", "tuv", "wxyz",
"", " ", ""

};

int main() {
int T;
scanf("%d\n", &T);

for (int t = 0; t < T; t++) {

// Each test case is handled here
}

return 0;
}

43



SMS Typing: Solution
// Each test case:

string line;
getline(cin, line);

int cnt = 0;
for (int i = 0; i < line.size(); i++) {

int cur;
for (int j = 0; j < 12; j++) {

for (int k = 0; k < keys[j].size(); k++) {
if (line[i] == keys[j][k]) {

cur = k + 1;
}

}
}

cnt += cur;
}

printf("Case #%d: %d\n", t + 1, cnt);

44



Problem set 1

▶ The first problem set is already online
▶ Deadline is next Sunday
▶ We urge you to start right away nonetheless

45


