Data structures and libraries

Bjarki Ágúst Guðmundsson Tómas Ken Magnússon

School of Computer Science Reykjavík University

Árangursrík forritun og lausn verkefna

Today we're going to cover

- Basic data types
- ▶ Big integers
- Why we need data structures
- Data structures you already know
- Sorting and searching
- Using bitmasks to represent sets
- Common applications of the data structures
- Augmenting binary search trees
- Representing graphs

Basic data types

You should all be familiar with the basic data types:

- bool: a boolean (true/false)
- char: an 8-bit signed integer (often used to represent characters with ASCII)
- short: a 16-bit signed integer
- int: a 32-bit signed integer
- long long: a 64-bit signed integer
- float: a 32-bit floating-point number
- double: a 64-bit floating-point number
- long double: a 128-bit floating-point number
- string: a string of characters

Basic data types

Туре	Bytes	Min value	Max value
bool	1		
char	1	-128	127
short	2	-32768	32767
int	4	-2148364748	2147483647
long long	8	-9223372036854775808	9223372036854775807
	n	-2^{8n-1}	$2^{8n-1}-1$

Туре	Bytes	Min value	Max value
unsigned char	1	0	255
unsigned short	2	0	65535
unsigned int	4	0	4294967295
unsigned long long	8	0	18446744073709551615
	n	0	$2^{8n}-1$

Type	Bytes	Min value	Max value	Precision
float	4	$\approx -3.4 \times 10^{-38}$	$\approx 3.4 \times 10^{-38}$	pprox 7 digits
double	8	$\approx -1.7 \times 10^{-308}$	$\approx 1.7 \times 10^{-308}$	pprox 14 digits

Big integers

- What if we need to represent and do computations with very large integers, i.e. something that doesn't fit in a long long
- Simple idea: Store the integer as a string
- But how do we perform arithmetic on a pair of strings?
- We can use the same algorithms as we learned in elementary school
 - Addition: Add digit-by-digit, and maintain the carry
 - Subtraction: Similar to addition
 - Multiplication: Long multiplication
 - Division: Long division
 - Modulo: Long division

Example problem: Integer Inquiry

► http://uva.onlinejudge.org/external/4/424.html

Why do we need data structures?

- Sometimes our data needs to be organized in a way that allows one or more of
 - Efficient querying
 - Efficient inserting
 - Efficient deleting
 - Efficient updating
- Sometimes we need a better way to represent our data
 - How do we represent large integers?
 - How do we represent graphs?
- Data structures help us achieve those things

Data structures you've seen before

- Static arrays
- Dynamic arrays
- Linked lists
- Stacks
- Queues
- ▶ Priority Queues
- Sets
- Maps

Data structures you've seen before

- Static arrays int arr[10]
- Dynamic arrays vector<int>
- ▶ Linked lists list<int>
- Stacks stack<int>
- Queues queue < int>
- Priority Queues priority_queue<int>
- Sets set<int>
- Maps map<int, int>

Data structures you've seen before

- Static arrays int arr[10]
- Dynamic arrays vector<int>
- Linked lists list<int>
- Stacks stack<int>
- Queues queue < int>
- Priority Queues priority_queue<int>
- ▶ Sets set<int>
- ► Maps map<int, int>
- Usually it's best to use the standard library implementations
 - Almost surely bug-free and fast
 - We don't need to write any code
- Sometimes we need our own implementation
 - When we want more flexibility
 - When we want to customize the data structure

Sorting and searching

- Very common operations:
 - Sorting an array
 - Searching an unsorted array
 - Searching a sorted array
- Again, usually in the standard library
- We'll need different versions of binary search later which need custom code, but lower_bound is enough for now

Sorting and searching

- Very common operations:
 - Sorting an array sort(arr.begin(), arr.end())
 - Searching an unsorted array find(arr.begin(), arr.end(), x)
 - Searching a sorted array lower_bound(arr.begin(), arr.end(), x)
- Again, usually in the standard library
- We'll need different versions of binary search later which need custom code, but lower_bound is enough for now

- ▶ We have a small (n < 30) number of items
- ▶ We label them with integers in the range 0, 1, ..., n-1
- We can represent sets of these items as a 32-bit integer
- ► The ith item is in the set represented by the integer x if the ith bit in x is 1
- ► Example:
 - We have the set $\{0, 3, 4\}$
 - int x = (1 << 0) | (1 << 3) | (1 << 4);

► Empty set:

0

► Single element set:

► The universe set (i.e. all elements):

$$(1 << n)-1$$

▶ Union of sets:

Intersection of sets:

Complement of a set:

$$-x & ((1 << n) -1)$$

► Check if an element is in the set:

```
if (x & (1<<i)) {
     // yes
} else {
     // no
}</pre>
```

- Why do this instead of using set<int>?
- Very lightweight representation
- ▶ All subsets of the *n* elements can be represented by integers in the range $0 ... 2^n 1$
- Allows for easily iterating through all subsets (we'll see this later)
- Allows for easily using a set as an index of an array (we'll see this later)

Applications of Arrays and Linked Lists

- ▶ Too many to list
- Most problems require storing data, usually in an array

Example problem: Broken Keyboard

► http://uva.onlinejudge.org/external/119/11988.html

Applications of Stacks

- Processing events in a first-in first-out order
- Simulating recursion
- Depth-first search in a graph
- ► Reverse a sequence
- Matching brackets
- And a lot more

Applications of Queues

- Processing events in a first-in first-out order
- Breadth-first search in a graph
- And a lot more

Applications of Priority Queues

- Processing events in order of priority
- Finding a shortest path in a graph
- Some greedy algorithms
- And a lot more

Applications of Sets

- Keep track of distinct items
- Have we seen an item before?
- ▶ If implemented as a binary search tree:
 - Find the successor of an element (the smallest element that is greater than the given element)
 - Count how many elements are less than a given element
 - Count how many elements are between two given elements
 - Find the kth largest element
- And a lot more

Applications of Maps

- Associating a value with a key
- As a frequency table
- ► As a memory when we're doing Dynamic Programming (later)
- And a lot more

Augmenting Data Structures

- Sometimes we can store extra information in our data structures to gain more functionality
- Usually we can't do this to data structures in the standard library
- Need our own implementation that we can customize
- Example: Augmenting binary search trees

- We have a binary search tree and want to efficiently:
 - Count number of elements < x
 - Find the kth smallest element
- Naive method is to go through all vertices, but that is slow: O(n)

- Idea: In each vertex store the size of the subtree
- This information can be maintained when we insert/delete elements without adding time complexity

► Count number of elements < 38

- Search for 38 in the tree
- Count the vertices that we pass by that are less than x
- When we are at a vertex where we should go right, get the size of the left subtree and add it to our count

► Count number of elements < 38

- Search for 38 in the tree
- Count the vertices that we pass by that are less than x
- When we are at a vertex where we should go right, get the size of the left subtree and add it to our count
- ► Time complexity $O(\log n)$

► Find *k*th smallest element

- We're on a vertex whose left subtree is of size m
- If k = m + 1, we found it
- If k ≤ m, look for the kth smallest element in the left subtree
- If k > m + 1, look for the k - m - 1st smallest element in the right subtree

► Find kth smallest element

- We're on a vertex whose left subtree is of size m
- If k = m + 1, we found it
- If k ≤ m, look for the kth smallest element in the left subtree
- If k > m + 1, look for the m - k - 1st smallest element in the right subtree
- **►** Example: *k* = 11

Representing graphs

- There are many types of graphs:
 - Directed vs. undirected
 - Weighted vs. unweighted
 - Simple vs. non-simple
- Many ways to represent graphs
- Some special graphs (like trees) have special representations
- Most commonly used (general) representations:
 - 1. Adjacency list
 - 2. Adjacency matrix
 - 3. Edge list

Adjacency list

```
0: 1, 2
1: 0, 2
2: 0, 1, 3
vector<int> adj[4];
adj[0].push back(1);
adj[0].push back(2);
adj[1].push back(0);
adj[1].push back(2);
adj[2].push_back(0);
adj[2].push back(1);
adj[2].push back(2);
adj[3].push back(2);
```


Adjacency matrix

```
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0
bool adj[4][4];
adj[0][1] = true;
adj[0][2] = true;
adj[1][0] = true;
adj[1][2] = true;
adj[2][0] = true;
adj[2][1] = true;
adj[2][3] = true;
```

adj[3][2] = true;

Edge list

```
0, 1
0, 2
1, 2
2, 3
```

```
vector<pair<int, int> > edges;
edges.push_back(make_pair(0, 1));
edges.push_back(make_pair(0, 2));
edges.push_back(make_pair(1, 2));
edges.push_back(make_pair(2, 3));
```


Efficiency

	Adjacency list	Adjacency matrix	Edge list
Storage	O(V + E)	$O(V ^2)$	O(E)
Add vertex	O(1)	$O(V ^2)$	O(1)
Add edge	O (1)	O (1)	O (1)
Remove vertex	O(E)	$O(V ^2)$	O(E)
Remove edge	O(E)	O(1)	O(E)
Query: are <i>u</i> , <i>v</i> adjacent?	O(V)	O(1)	O(E)

 Different representations are good for different situations

Example problem: Easy Problem from Rujia Liu?

http://uva.onlinejudge.org/external/119/11991.html