Data structures and libraries

Bjarki Ágúst Guồmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

Today we're going to cover

- Basic data types
- Big integers
- Why we need data structures
- Data structures you already know
- Sorting and searching
- Using bitmasks to represent sets
- Common applications of the data structures
- Augmenting binary search trees
- Representing graphs

Basic data types

- You should all be familiar with the basic data types:
- bool: a boolean (true/false)
- char: an 8-bit signed integer (often used to represent characters with ASCII)
- short: a 16-bit signed integer
- int: a 32-bit signed integer
- long long: a 64-bit signed integer
- float: a 32-bit floating-point number
- double: a 64-bit floating-point number
- long double: a 128-bit floating-point number
- string: a string of characters

Basic data types

Type	Bytes	Min value	Max value
bool	1		
char	1	-128	127
short	2	-32768	32767
int	4	-2148364748	2147483647
long long	8	-9223372036854775808	9223372036854775807
	n	$-2^{8 n-1}$	$2^{8 n-1}-1$

Type	Bytes	Min value	Max value
unsigned char	1	0	255
unsigned short	2	0	65535
unsigned int	4	0	4294967295
unsigned long long	8	0	18446744073709551615
	n	0	$2^{8 n}-1$

Type	Bytes	Min value	Max value	Precision
float	4	$\approx-3.4 \times 10^{-38}$	$\approx 3.4 \times 10^{-38}$	≈ 7 digits
double	8	$\approx-1.7 \times 10^{-308}$	$\approx 1.7 \times 10^{-308}$	≈ 14 digits

Big integers

- What if we need to represent and do computations with very large integers, i.e. something that doesn't fit in a long long
- Simple idea: Store the integer as a string
- But how do we perform arithmetic on a pair of strings?
- We can use the same algorithms as we learned in elementary school
- Addition: Add digit-by-digit, and maintain the carry
- Subtraction: Similar to addition
- Multiplication: Long multiplication
- Division: Long division
- Modulo: Long division

Example problem: Integer Inquiry

- http://uva.onlinejudge.org/external/4/424.html

Why do we need data structures?

- Sometimes our data needs to be organized in a way that allows one or more of
- Efficient querying
- Efficient inserting
- Efficient deleting
- Efficient updating
- Sometimes we need a better way to represent our data
- How do we represent large integers?
- How do we represent graphs?
- Data structures help us achieve those things

Data structures you've seen before

- Static arrays
- Dynamic arrays
- Linked lists
- Stacks
- Queues
- Priority Queues
- Sets
- Maps

Data structures you've seen before

- Static arrays - int arr[10]
- Dynamic arrays - vector<int>
- Linked lists - list<int>
- Stacks - stack<int>
- Queues - queue<int>
- Priority Queues - priority_queue<int>
- Sets - set<int>
- Maps - map<int, int>

Data structures you've seen before

- Static arrays - int arr[10]
- Dynamic arrays - vector<int>
- Linked lists - list<int>
- Stacks - stack<int>
- Queues - queue<int>
- Priority Queues - priority_queue<int>
- Sets - set<int>
- Maps - map<int, int>
- Usually it's best to use the standard library implementations
- Almost surely bug-free and fast
- We don't need to write any code
- Sometimes we need our own implementation
- When we want more flexibility
- When we want to customize the data structure

Sorting and searching

- Very common operations:
- Sorting an array
- Searching an unsorted array
- Searching a sorted array
- Again, usually in the standard library
- We'll need different versions of binary search later which need custom code, but lower_bound is enough for now

Sorting and searching

- Very common operations:
- Sorting an array - sort(arr.begin(), arr.end())
- Searching an unsorted array - find(arr.begin(), arr.end(), x)
- Searching a sorted array - lower_bound(arr.begin(), arr.end(), x)
- Again, usually in the standard library
- We'll need different versions of binary search later which need custom code, but lower_bound is enough for now

Representing sets

- We have a small ($n \leq 30$) number of items
- We label them with integers in the range $0,1, \ldots, n-1$
- We can represent sets of these items as a 32-bit integer
- The ith item is in the set represented by the integer x if the ith bit in x is 1
- Example:
- We have the set $\{0,3,4\}$
- int $\mathrm{x}=(1 \ll 0)|(1 \ll 3)|(1 \ll 4)$;

Representing sets

- Empty set:

0

- Single element set:

$$
1 \ll i
$$

- The universe set (i.e. all elements):

$$
(1 \ll n)-1
$$

- Union of sets:

$$
x \mid y
$$

- Intersection of sets:

$$
x \& y
$$

- Complement of a set:

$$
\sim \mathrm{x} \text { \& }((1 \ll \mathrm{n})-1)
$$

Representing sets

- Check if an element is in the set:

$$
\begin{aligned}
& \text { if }(x \&(1 \ll i))\{ \\
& \text { // yes } \\
& \} \text { else \{ } \\
& \text { \} // no }
\end{aligned}
$$

Representing sets

- Why do this instead of using set<int>?
- Very lightweight representation
- All subsets of the n elements can be represented by integers in the range $0 \ldots 2^{n}-1$
- Allows for easily iterating through all subsets (we'll see this later)
- Allows for easily using a set as an index of an array (we'll see this later)

Applications of Arrays and Linked Lists

- Too many to list
- Most problems require storing data, usually in an array

Example problem: Broken Keyboard

- http://uva.onlinejudge.org/external/119/11988.html

Applications of Stacks

- Processing events in a first-in first-out order
- Simulating recursion
- Depth-first search in a graph
- Reverse a sequence
- Matching brackets
- And a lot more

Applications of Queues

- Processing events in a first-in first-out order
- Breadth-first search in a graph
- And a lot more

Applications of Priority Queues

- Processing events in order of priority
- Finding a shortest path in a graph
- Some greedy algorithms
- And a lot more

Applications of Sets

- Keep track of distinct items
- Have we seen an item before?
- If implemented as a binary search tree:
- Find the successor of an element (the smallest element that is greater than the given element)
- Count how many elements are less than a given element
- Count how many elements are between two given elements
- Find the kth largest element
- And a lot more

Applications of Maps

- Associating a value with a key
- As a frequency table
- As a memory when we're doing Dynamic Programming (later)
- And a lot more

Augmenting Data Structures

- Sometimes we can store extra information in our data structures to gain more functionality
- Usually we can't do this to data structures in the standard library
- Need our own implementation that we can customize
- Example: Augmenting binary search trees

Augmenting Binary Search Trees

- We have a binary search tree and want to efficiently:
- Count number of elements $<x$
- Find the k th smallest element
- Naive method is to go through all vertices, but that is slow: $O(n)$

Augmenting Binary Search Trees

- Idea: In each vertex store the size of the subtree
- This information can be maintained when we insert/delete elements without adding time complexity

Augmenting Binary Search Trees

- Count number of elements < 38
- Search for 38 in the tree
- Count the vertices that we pass by that are less than x
- When we are at a vertex where we should go right, get the size of the left subtree and add it to our count

Augmenting Binary Search Trees

- Count number of elements < 38
- Search for 38 in the tree
- Count the vertices that we pass by that are less than x
- When we are at a vertex where we should go right, get the size of the left subtree and add it to our count

- Time complexity $O(\log n)$

Augmenting Binary Search Trees

- Find kth smallest element
- We're on a vertex whose left subtree is of size m
- If $k=m+1$, we found it
- If $k \leq m$, look for the k th smallest element in the left subtree
- If $k>m+1$, look for the $k-m-1$ st smallest element in
 the right subtree

Augmenting Binary Search Trees

- Find kth smallest element
- We're on a vertex whose left subtree is of size m
- If $k=m+1$, we found it
- If $k \leq m$, look for the k th smallest element in the left subtree
- If $k>m+1$, look for the $m-k-1$ st smallest element in
 the right subtree
- Example: $k=11$

Representing graphs

- There are many types of graphs:
- Directed vs. undirected
- Weighted vs. unweighted
- Simple vs. non-simple
- Many ways to represent graphs
- Some special graphs (like trees) have special representations
- Most commonly used (general) representations:

1. Adjacency list
2. Adjacency matrix
3. Edge list

Adjacency list

```
0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2
vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(2);
adj[3].push_back(2);
```


Adjacency matrix

```
0 1 1 0
1010
1 1 0 1
0 0 1 0
```

bool adj[4][4];
$\operatorname{adj}[0][1]=$ true;
$\operatorname{adj}[0][2]=$ true;
adj[1][0] = true;
$\operatorname{adj}[1][2]=$ true;
adj[2][0] = true;
adj[2][1] = true;
adj[2][3] = true;
adj[3][2] = true;

Edge list

$$
\begin{array}{ll}
0, & 1 \\
0, & 2 \\
1, & 2 \\
2, & 3
\end{array}
$$

vector<pair<int, int\gg edges; edges.push_back(make_pair (0, 1)) ;
 edges.push_back(make_pair (0, 2)); edges.push_back(make_pair (1, 2)); edges.push_back(make_pair (2, 3));

Efficiency

Storage
Add vertex
Add edge
Remove vertex
Remove edge
Query: are u, v adjacent?

Adjacency list Adjacency matrix
$O(|V|+|E|)$
$O(1)$
$O(1)$
$O(|E|)$
$O(|E|)$
$O(|V|)$
$O\left(|V|^{2}\right)$
Edge list
$O(|E|)$
$O\left(|V|^{2}\right)$
$O(1)$
$O\left(|V|^{2}\right)$
$O(1)$
$O(1)$

- Different representations are good for different situations

Example problem: Easy Problem from Rujia

 Liu?- http://uva.onlinejudge.org/external/119/11991.html

