
Problem solving paradigms

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

http://ru.is/td
http://ru.is


Today we’re going to cover

▶ Problem solving paradigms
▶ Complete search
▶ Backtracking
▶ Divide and conquer

2



Example problem
▶ Problem C from NWERC 2006: Pie

3



Problem solving paradigms

▶ What is a problem solving paradigm?
▶ A method to construct a solution to a specific type of
problem

▶ Today and in later lectures we will study common
problem solving paradigms

4



Complete search
▶ We have a finite set of objects
▶ We want to find an element in that set which satisfies
some constraints

– or find all elements in that set which satisfy some
constraints

▶ Simple! Just go through all elements in the set, and
for each of them check if they satisify the constraints

▶ Of course it’s not going to be very efficient...
▶ But remember, we always want the simplest solution
that runs in time

▶ Complete search should be the first problem solving
paradigm you think about when you’re trying to solve
a problem

5



Example problem: Vito’s family
▶ http://uva.onlinejudge.org/external/100/10041.html

6



Complete search

▶ What if the search space is more complex?
– All permutations of n items
– All subsets of n items
– All ways to put n queens on an n× n chessboard without

any queen attacking any other queen

▶ How are we supposed to iterate through the search
space?

▶ Let’s take a better look at these examples

7



Iterating through permutations
▶ Already implemented in many standard libraries:

– next_permutation in C++
– itertools.permutations in Python

int n = 5;
vector<int> perm(n);
for (int i = 0; i < n; i++) perm[i] = i + 1;

do {
for (int i = 0; i < n; i++) {

printf("%d ", perm[i]);
}
printf("\n");

} while (next_permutation(perm.begin(), perm.end()));

8



Iterating through permutations

▶ Even simpler in Python...

▶ Remember that there are n! permutations of length n,
so usually you can only go through all permutations if
n ≤ 11

– Otherwise you need to find a more clever approach than
complete search

9



Iterating through subsets
▶ Remember the bit representation of subsets?
▶ Each integer from 0 to 2n − 1 represents a different
subset of the set {1, 2, . . . , n}

▶ Just iterate through the integers

int n = 5;
for (int subset = 0; subset < (1 << n); subset++) {

for (int i = 0; i < n; i++) {
if ((subset & (1 << i)) != 0) {

printf("%d ", i+1);
}

}
printf("\n");

}

10



Iterating through subsets

▶ Similar in Python

▶ Remember that there are 2n permutations of length n,
so usually you can only go through all permutations if
n ≤ 25

– Otherwise you need to find a more clever approach than
complete search

11



Backtracking

▶ We’ve seen two ways to go through a complex search
space, but both of the solutions were rather specific

▶ Would be nice to have a more general “framework”

▶ Backtracking!

12



Backtracking

▶ Define states
– We have one initial “empty” state
– Some states are partial
– Some states are complete

▶ Define transitions from a state to possible next states

▶ Basic idea:
1. Start with the empty state
2. Use recursion to traverse all states by going through the

transitions
3. If the current state is invalid, then stop exploring this branch
4. Process all complete states (these are the states we’re

looking for)

13



Backtracking

▶ General solution form:

state S;

void generate() {
if (!is_valid(S))

return;

if (is_complete(S))
print(S);

foreach (possible next move P) {
apply move P;
generate();
undo move P;

}
}

S = empty state;
generate();

14



Generating all subsets
▶ Also simple to do with backtracking:

const int n = 5;
bool pick[n];

void generate(int at) {
if (at == n) {

for (int i = 0; i < n; i++) {
if (pick[i]) {

printf("%d ", i+1);
}

}
printf("\n");

} else {

// either pick element no. at
pick[at] = true;
generate(at + 1);

// or don't pick element no. at
pick[at] = false;
generate(at + 1);

}
}

generate(0);

15



Generating all permutations
▶ Also simple to do with backtracking:

const int n = 5;
int perm[n];
bool used[n];

void generate(int at) {
if (at == n) {

for (int i = 0; i < n; i++) {
printf("%d ", perm[i]+1);

}
printf("\n");

} else {

// decide what the at-th element should be
for (int i = 0; i < n; i++) {

if (!used[i]) {
used[i] = true;
perm[at] = i;

generate(at + 1);

// remember to undo the move:
used[i] = false;

}
}

}
}

memset(used, 0, n);
generate(0);

16



n queens

▶ Given n queens and an n× n chessboard, find all
ways to put the n queens on the chessboard such
that no queen can attack any other queen

▶ This is a very specific set we want to iterate through,
so we probably won’t find this in the standard library

▶ We could use our bit trick to iterate through all
subsets of the n× n cells of size n, but that would be
very slow

▶ Let’s use backtracking

17



n queens

▶ Go through the cells in increasing order
▶ Either put a queen on that cell or not (transition)
▶ Don’t put down a queen if she’s able to attack another
queen already on the table

const int n = 8;
bool has_queen[n][n];
int queens_left = n;

// generate function

memset(has_queen, 0, sizeof(has_queen));
generate(0, 0);

18



n queens
void generate(int x, int y) {

if (y == n) {
generate(x+1, 0);

} else if (x == n) {
if (queens_left == 0) {

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

printf("%c", has_queen[i][j] ? 'Q' : '.');
}
printf("\n");

}
}

} else {

if (queens_left > 0 and no queen can attack cell (x,y)) {
// try putting a queen on this cell
has_queen[x][y] = true;
queens_left--;

generate(x, y+1);

// undo the move
has_queen[x][y] = false;
queens_left++;

}

// try leaving this cell empty
generate(x, y+1);

}
}

19



Example problem: The Hamming Distance
Problem

▶ http://uva.onlinejudge.org/external/7/729.html

20



Divide and conquer

▶ Given an instance of the problem, the basic idea is to
1. split the problem into one or more smaller subproblems
2. solve each of these subproblems recursively
3. combine the solutions to the subproblems into a solution of

the given problem

▶ Some standard divide and conquer algorithms:
– Quicksort
– Mergesort
– Karatsuba algorithm
– Strassen algorithm
– Many algorithms from computational geometry

▶ Convex hull
▶ Closest pair of points

21



Divide and conquer: Time complexity
void solve(int n) {

if (n == 0)
return;

solve(n/2);
solve(n/2);

for (int i = 0; i < n; i++) {
// some constant time operations

}
}

▶ What is the time complexity of this divide and
conquer algorithm?

▶ Usually helps to model the time complexity as a
recurrence relation:

– T(n) = 2T(n/2) + n

22



Divide and conquer: Time complexity
▶ But how do we solve such recurrences?
▶ Usually simplest to use the Master theorem when
applicable

– It gives a solution to a recurrence of the form
T(n) = aT(n/b) + f(n) in asymptotic terms

– All of the divide and conquer algorithms mentioned so far
have a recurrence of this form

▶ The Master theorem tells us that T(n) = 2T(n/2) + n
has asymptotic time complexity O(n logn)

▶ You don’t need to know the Master theorem for this
course, but still recommended as it’s very useful

23



Decrease and conquer

▶ Sometimes we’re not actually dividing the problem
into many subproblems, but only into one smaller
subproblem

▶ Usually called decrease and conquer
▶ The most common example of this is binary search

24



Binary search

▶ We have a sorted array of elements, and we want to
check if it contains a particular element x

▶ Algorithm:
1. Base case: the array is empty, return false
2. Compare x to the element in the middle of the array
3. If it’s equal, then we found x and we return true
4. If it’s less, then x must be in the left half of the array

4.1 Binary search the element (recursively) in the left half
5. If it’s greater, then x must be in the right half of the array

5.1 Binary search the element (recursively) in the right
half

25



Binary search

bool binary_search(const vector<int> &arr, int lo, int hi, int x) {
if (lo > hi) {

return false;
}

int m = (lo + hi) / 2;
if (arr[m] == x) {

return true;
} else if (x < arr[m]) {

return binary_search(arr, lo, m - 1, x);
} else if (x > arr[m]) {

return binary_search(arr, m + 1, hi, x);
}

}

binary_search(arr, 0, arr.size() - 1, x);

▶ T(n) = T(n/2) + 1

▶ O(logn)
26



Binary search - iterative

bool binary_search(const vector<int> &arr, int x) {
int lo = 0,

hi = arr.size() - 1;

while (lo <= hi) {
int m = (lo + hi) / 2;
if (arr[m] == x) {

return true;
} else if (x < arr[m]) {

hi = m - 1;
} else if (x > arr[m]) {

lo = m + 1;
}

}

return false;
}

27



Binary search over integers
▶ This might be the most well known application of
binary search, but it’s far from being the only
application

▶ More generally, we have a predicate
p : {0, . . . , n− 1} → {T,F} which has the property
that if p(i) = T, then p(j) = T for all j > i

▶ Our goal is to find the smallest index j such that
p(j) = T as quickly as possible

i 0 1 · · · j− 1 j j+ 1 · · · n− 2 n− 1
p(i) F F · · · F T T · · · T T

▶ We can do this in O(log(n)× f) time, where f is the
cost of evaluating the predicate p, in the same way as
when we were binary searching an array

28



Binary search over integers
int lo = 0,

hi = n - 1;

while (lo < hi) {
int m = (lo + hi) / 2;

if (p(m)) {
hi = m;

} else {
lo = m + 1;

}
}

if (lo == hi && p(lo)) {
printf("lowest index is %d\n", lo);

} else {
printf("no such index\n");

}
29



Binary search over integers
▶ Find the index of x in the sorted array arr

bool p(int i) {
return arr[i] >= x;

}

▶ Later we’ll see how to use this in other ways

30



Binary search over reals
▶ An even more general version of binary search is
over the real numbers

▶ We have a predicate p : [lo,hi] → {T,F} which has
the property that if p(i) = T, then p(j) = T for all j > i

▶ Our goal is to find the smallest real number j such
that p(j) = T as quickly as possible

▶ Since we’re working with real numbers
(hypothetically), our [lo,hi] can be halved infinitely
many times without ever becoming a single real
number

▶ Instead it will suffice to find a real number j′ that is
very close to the correct answer j, say not further than
EPS = 2−30 away

▶ We can do this in O(log(hi−lo
EPS )) time in a similar way

as when we were binary searching an array
31



Binary search over reals
double EPS = 1e-10,

lo = -1000.0,
hi = 1000.0;

while (hi - lo > EPS) {
double mid = (lo + hi) / 2.0;

if (p(mid)) {
hi = mid;

} else {
lo = mid;

}
}

printf("%0.10lf\n", lo);
32



Binary search over reals
▶ This has many cool numerical applications
▶ Find the square root of x

bool p(double j) {
return j*j >= x;

}

▶ Find the root of an increasing function f(x)

bool p(double x) {
return f(x) >= 0.0;

}

▶ This is also referred to as the Bisection method

33



Example problem
▶ Problem C from NWERC 2006: Pie

34



Binary search the answer

▶ It may be hard to find the optimal solution directly, as
we saw in the example problem

▶ On the other hand, it may be easy to check if some x
is a solution or not

▶ A method of using binary search to find the minimum
or maximum solution to a problem

▶ Only applicable when the problem has the binary
search property: if i is a solution, then so are all j > i

▶ p(i) checks whether i is a solution, then we simply
apply binary search on p to get the minimum or
maximum solution

35



Other types of divide and conquer

▶ Binary search is very useful, can be used to construct
simple and efficient solutions to problems

▶ But binary search is only one example of divide and
conquer

▶ Let’s explore two more examples

36



Binary exponentiation
▶ We want to calculate xn, where x, n are integers
▶ Assume we don’t have the built in pow method
▶ Naive method:

int pow(int x, int n) {
int res = 1;
for (int i = 0; i < n; i++) {

res = res * x;
}

return res;
}

▶ This is O(n), but what if we want to support large n
efficiently?

37



Binary exponentiation
▶ Let’s use divide and conquer

▶ Notice the three identities:
– x0 = 1
– xn = x× xn−1

– xn = xn/2 × xn/2

▶ Or in terms of our function:
– pow(x, 0) = 1
– pow(x, n) = x× pow(x, n− 1)
– pow(x, n) = pow(x, n/2)× pow(x, n/2)

▶ pow(x, n/2) is used twice, but we only need to
compute it once:

– pow(x, n) = pow(x, n/2)2

38



Binary exponentiation

▶ Let’s try using these identities to compute the answer
recursively

int pow(int x, int n) {
if (n == 0) return 1;
return x * pow(x, n - 1);

}

▶ How efficient is this?
– T(n) = 1 + T(n− 1)

– O(n)
– Still just as slow...

39



Binary exponentiation

▶ Let’s try using these identities to compute the answer
recursively

int pow(int x, int n) {
if (n == 0) return 1;
return x * pow(x, n - 1);

}

▶ How efficient is this?
– T(n) = 1 + T(n− 1)

– O(n)
– Still just as slow...

39



Binary exponentiation

▶ Let’s try using these identities to compute the answer
recursively

int pow(int x, int n) {
if (n == 0) return 1;
return x * pow(x, n - 1);

}

▶ How efficient is this?
– T(n) = 1 + T(n− 1)
– O(n)

– Still just as slow...

39



Binary exponentiation

▶ Let’s try using these identities to compute the answer
recursively

int pow(int x, int n) {
if (n == 0) return 1;
return x * pow(x, n - 1);

}

▶ How efficient is this?
– T(n) = 1 + T(n− 1)
– O(n)
– Still just as slow...

39



Binary exponentiation
▶ What about the third identity?

– n/2 is not an integer when n is odd, so let’s only use it
when n is even

int pow(int x, int n) {
if (n == 0) return 1;
if (n % 2 != 0) return x * pow(x, n - 1);
int st = pow(x, n/2);
return st * st;

}
▶ How efficient is this?

– T(n) = 1 + T(n− 1) if n is odd
– T(n) = 1 + T(n/2) if n is even
– Since n− 1 is even when n is odd:
– T(n) = 1 + 1 + T((n− 1)/2) if n is odd
– O(logn)
– Fast!

40



Binary exponentiation
▶ What about the third identity?

– n/2 is not an integer when n is odd, so let’s only use it
when n is even

int pow(int x, int n) {
if (n == 0) return 1;
if (n % 2 != 0) return x * pow(x, n - 1);
int st = pow(x, n/2);
return st * st;

}
▶ How efficient is this?

– T(n) = 1 + T(n− 1) if n is odd
– T(n) = 1 + T(n/2) if n is even

– Since n− 1 is even when n is odd:
– T(n) = 1 + 1 + T((n− 1)/2) if n is odd
– O(logn)
– Fast!

40



Binary exponentiation
▶ What about the third identity?

– n/2 is not an integer when n is odd, so let’s only use it
when n is even

int pow(int x, int n) {
if (n == 0) return 1;
if (n % 2 != 0) return x * pow(x, n - 1);
int st = pow(x, n/2);
return st * st;

}
▶ How efficient is this?

– T(n) = 1 + T(n− 1) if n is odd
– T(n) = 1 + T(n/2) if n is even
– Since n− 1 is even when n is odd:
– T(n) = 1 + 1 + T((n− 1)/2) if n is odd

– O(logn)
– Fast!

40



Binary exponentiation
▶ What about the third identity?

– n/2 is not an integer when n is odd, so let’s only use it
when n is even

int pow(int x, int n) {
if (n == 0) return 1;
if (n % 2 != 0) return x * pow(x, n - 1);
int st = pow(x, n/2);
return st * st;

}
▶ How efficient is this?

– T(n) = 1 + T(n− 1) if n is odd
– T(n) = 1 + T(n/2) if n is even
– Since n− 1 is even when n is odd:
– T(n) = 1 + 1 + T((n− 1)/2) if n is odd
– O(logn)
– Fast!

40



Binary exponentiation

▶ Notice that x doesn’t have to be an integer, and ⋆
doesn’t have to be integer multiplication...

▶ It also works for:
– Computing xn, where x is a floating point number and ⋆ is

floating point number multiplication
– Computing An, where A is a matrix and ⋆ is matrix

multiplication
– Computing xn (mod m), where x is a matrix and ⋆ is

integer multiplication modulo m
– Computing x ⋆ x ⋆ · · · ⋆ x, where x is any element and ⋆ is

any associative operator

▶ All of these can be done in O(log(n)× f), where f is
the cost of doing one application of the ⋆ operator

41



Fibonacci words
▶ Recall that the Fibonacci sequence can be defined as
follows:

– fib1 = 1
– fib2 = 1
– fibn = fibn−2 + fibn−1

▶ We get the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . .

▶ There are many generalizations of the Fibonacci
sequence

▶ One of them is to start with other numbers, like:
– f1 = 5
– f2 = 4
– fn = fn−2 + fn−1

▶ We get the sequence 5, 4, 9, 13, 22, 35, 57, . . .

▶ What if we start with something other than numbers?
42



Fibonacci words

▶ Let’s try starting with a pair of strings, and let +
denote string concatenation:

– g1 = A
– g2 = B
– gn = gn−2 + gn−1

▶ Now we get the sequence of strings:
– A
– B
– AB
– BAB
– ABBAB
– BABABBAB
– ABBABBABABBAB
– BABABBABABBABBABABBAB
– . . .

43



Fibonacci words
▶ How long is gn?

– len(g1) = 1
– len(g2) = 1
– len(gn) = len(gn−2) + len(gn−1)

▶ Looks familiar?
▶ len(gn) = fibn

▶ So the strings become very large very quickly
– len(g10) = 55
– len(g100) = 354224848179261915075
– len(g1000) =

434665576869374564356885276750406258025646605173717

804024817290895365554179490518904038798400792551692

959225930803226347752096896232398733224711616429964

409065331879382989696499285160037044761377951668492

28875
44



Fibonacci words

▶ Task: Compute the ith character in gn

▶ Simple to do in O(len(n)), but that is extremely slow
for large n

▶ Can be done in O(n) using divide and conquer

45



Fibonacci words

▶ Task: Compute the ith character in gn

▶ Simple to do in O(len(n)), but that is extremely slow
for large n

▶ Can be done in O(n) using divide and conquer

45



Fibonacci words

▶ Task: Compute the ith character in gn

▶ Simple to do in O(len(n)), but that is extremely slow
for large n

▶ Can be done in O(n) using divide and conquer

45


