Dynamic Programming

Bjarki Ágúst Guồmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

Today we're going to cover

- Dynamic Programming

What is dynamic programming?

- A problem solving paradigm
- Similar in some respects to both divide and conquer and backtracking
- Divide and conquer recap:
- Split the problem into independent subproblems
- Solve each subproblem recursively
- Combine the solutions to subproblems into a solution for the given problem
- Dynamic programming:
- Split the problem into overlapping subproblems
- Solve each subproblem recursively
- Combine the solutions to subproblems into a solution for the given problem
- Don't compute the answer to the same problem more than once

Dynamic programming formulation

1. Formulate the problem in terms of smaller versions of the problem (recursively)
2. Turn this formulation into a recursive function
3. Memoize the function (remember results that have been computed)

Dynamic programming formulation

```
map<problem, value> memory;
value dp(problem P) {
    if (is_base_case(P)) {
        return base_case_value(P);
    }
    if (memory.find(P) != memory.end()) {
        return memory[P];
    }
value result = some value;
for (problem Q in subproblems(P)) {
    result = combine(result, dp(Q));
    }
    memory[Q] = result;
    return result;
}
```


The Fibonacci sequence

The first two numbers in the Fibonacci sequence are 1 and 1. All other numbers in the sequence are defined as the sum of the previous two numbers in the sequence.

- Task: Find the nth number in the Fibonacci sequence
- Let's solve this with dynamic programming

1. Formulate the problem in terms of smaller versions of the problem (recursively)
fibonacci $(1)=1$
fibonacci $(2)=1$
fibonacci $(n)=\operatorname{fibonacci}(n-2)+\operatorname{fibonacci}(n-1)$

The Fibonacci sequence

2. Turn this formulation into a recursive function
```
int fibonacci(int n) {
    if (n <= 2) {
        return 1;
    }
    int res = fibonacci(n - 2) + fibonacci(n - 1);
    return res;
}
```


The Fibonacci sequence

- What is the time complexity of this?

The Fibonacci sequence

- What is the time complexity of this? Exponential, almost $O\left(2^{n}\right)$

The Fibonacci sequence

3. Memoize the function (remember results that have been computed)
```
map<int, int> mem;
int fibonacci(int n) {
    if (n <= 2) {
        return 1;
    }
    if (mem.find(n) != mem.end()) {
        return mem[n];
    }
    int res = fibonacci(n - 2) + fibonacci(n - 1);
    mem[n] = res;
    return res;
}
```


The Fibonacci sequence

```
int mem[1000];
for (int i = 0; i < 1000; i++)
    mem[i] = -1;
int fibonacci(int n) {
    if (n <= 2) {
        return 1;
    }
    if (mem[n] != -1) {
        return mem[n];
    }
    int res = fibonacci(n - 2) + fibonacci(n - 1);
    mem[n] = res;
    return res;
}
```


The Fibonacci sequence

- What is the time complexity now?
- We have n possible inputs to the function: $1,2, \ldots, n$.
- Each input will either:
- be computed, and the result saved
- be returned from the memory
- Each input will be computed at most once
- Time complexity is $O(n \times f)$, where f is the time complexity of computing an input if we assume that the recursive calls are returned directly from memory (O(1))
- Since we're only doing constant amount of work to compute the answer to an input, $f=O(1)$
- Total time complexity is $O(n)$

Maximum sum

- Given an array $\operatorname{arr}[0], \operatorname{arr}[1], \ldots, \operatorname{arr}[n-1]$ of integers, find the interval with the highest sum

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline-15 & 8 & -2 & 1 & 0 & 6 & -3 \\
\hline
\end{array}
$$

Maximum sum

- Given an array $\operatorname{arr}[0], \operatorname{arr}[1], \ldots, \operatorname{arr}[n-1]$ of integers, find the interval with the highest sum

-15	8	-2	1	0	6	-3

- The maximum sum of an interval in this array is 13

Maximum sum

- Given an array $\operatorname{arr}[0], \operatorname{arr}[1], \ldots, \operatorname{arr}[n-1]$ of integers, find the interval with the highest sum

-15	8	-2	1	0	6	-3

- The maximum sum of an interval in this array is 13
- But how do we solve this in general?
- Easy to loop through all $\approx n^{2}$ intervals, and calculate their sums, but that is $O\left(n^{3}\right)$
- We could use our static range sum trick to get this down to $O\left(n^{2}\right)$
- Can we do better with dynamic programming?

Maximum sum

- First step is to formulate this recursively
- Let max_sum (i) be the maximum sum interval in the range $0, \ldots, i$
- Base case: max_sum $(0)=\max (0, \operatorname{arr}[0])$
- What about max_sum(i)?
- What does max_sum $(i-1)$ return?
- Is it possible to combine solutions to subproblems with smaller i into a solution for i ?
- At least it's not obvious...

Maximum sum

- Let's try changing perspective
- Let max_sum(i) be the maximum sum interval in the range $0, \ldots, i$, that ends at i
- Base case: max_sum $(0)=\operatorname{arr}[0]$
- max_sum $(i)=\max \left(\operatorname{arr}[i], \operatorname{arr}[i]+\max _\operatorname{sum}(i-1)\right)$
- Then the answer is just max $0 \leq i<n\{$ max_sum($i)\}$

Maximum sum

- Next step is to turn this into a function

```
int arr[1000];
int max_sum(int i) {
    if (i == 0) {
        return arr[i];
    }
    int res = max(arr[i], arr[i] + max_sum(i - 1));
    return res;
}
```


Maximum sum

- Final step is to memoize the function

```
int arr[1000];
int mem[1000];
bool comp[1000];
memset(comp, 0, sizeof(comp));
int max_sum(int i) {
    if (i == 0) {
        return arr[i];
    }
    if (comp[i]) {
        return mem[i];
    }
    int res = max(arr[i], arr[i] + max_sum(i - 1));
    mem[i] = res;
    comp[i] = true;
    return res;
}
```


Maximum sum

- Then the answer is just the maximum over all interval ends

```
int maximum = 0;
for (int i = 0; i < n; i++) {
    maximum = max(maximum, best_sum(i));
}
printf("%d\n", maximum);
```


Maximum sum

- If you want to find the maximum sum interval in multiple arrays, remember to clear the memory in between

Maximum sum

- What about time complexity?
- There are n possible inputs to the function
- Each input is processed in $O(1)$ time, assuming recursive calls are $O(1)$
- Time complexity is $O(n)$

Coin change

- Given an array of coin denominations $d_{0}, d_{2}, \ldots, d_{n-1}$, and some amount x : What is minimum number of coins needed to represent the value x ?
- Remember the greedy algorithm for Coin change?
- It didn't always give the optimal solution, and sometimes it didn't even give a solution at all...
- What about dynamic programming?

Coin change

- First step: formulate the problem recursively
- Let opt (i, x) denote the minimum number of coins needed to represent the value x if we're only allowed to use the coin denominations d_{0}, \ldots, d_{i}
- Base case: opt $(i, x)=\infty$ if $x<0$
- Base case: opt $(i, 0)=0$
- Base case: opt $(-1, x)=\infty$
$-\operatorname{opt}(i, x)=\min \left\{\begin{array}{l}1+\operatorname{opt}\left(i, x-d_{i}\right) \\ \operatorname{opt}(i-1, x)\end{array}\right.$

Coin change

```
int INF = 100000;
int d[10];
int opt(int i, int x) {
    if (x < 0) return INF;
    if (x == 0) return 0;
    if (i == -1) return INF;
    int res = INF;
    res = min(res, 1 + opt(i, x - d[i]));
    res = min(res, opt(i - 1, x));
    return res;
}
```


Coin change

```
int INF = 100000;
int d[10];
int mem[10][10000];
memset(mem, -1, sizeof(mem));
int opt(int i, int x) {
    if (x < 0) return INF;
    if (x == 0) return 0;
    if (i == -1) return INF;
    if (mem[i][x] != -1) return mem[i][x];
    int res = INF;
    res = min(res, 1 + opt(i, x - d[i]));
    res = min(res, opt(i - 1, x));
    mem[i][x] = res;
    return res;
}
```


Coin change

- Time complexity?
- Number of possible inputs are $n \times x$
- Each input will be processed in $O(1)$ time, assuming recursive calls are constant
- Total time complexity is $O(n \times x)$

Coin change

- How do we know which coins the optimal solution used?
- We can store backpointers, or some extra information, to trace backwards through the states
- See example...

Longest increasing subsequence

- Given an array a[0], a[1], ..., a[n-1] of integers, what is the length of the longest increasing subsequence?
- First, what is a subsequence?
- If we delete zero or more elements from a, then we have a subsequence of a
- Example: $\mathbf{a}=[5,1,8,1,9,2]$
- $[5,8,9]$ is a subsequence
- $[1,1]$ is a subsequence
- $[5,1,8,1,9,2]$ is a subsequence
- [] is a subsequence
- $[8,5]$ is not a subsequence
- [10] is not a subsequence

Longest increasing subsequence

- Given an array a[0], a[1], $\ldots, a[n-1]$ of integers, what is the length of the longest increasing subsequence?
- An increasing subsequence of a is a subsequence of a such that the elements are in (strictly) increasing order
- $[5,8,9]$ and $[1,8,9]$ are the longest increasing subsequences of $a=[5,1,8,1,9,2]$
- How do we compute the length of the longest increasing subsequence?
- There are 2^{n} subsequences, so we can go through all of them
- That would result in an $O\left(n 2^{n}\right)$ algorithm, which can only handle $n \leq 23$
- What about dynamic programming?

Longest increasing subsequence

- Let lis(i) denote the length of the longest increasing subsequence of the array $a[0], \ldots, a[i]$
- Base case: $\operatorname{lis}(0)=1$
- What about lis(i)?
- We have the same issue as in the maximum sum problem, so let's try changing perspective

Longest increasing subsequence

- Let lis(i) denote the length of the longest increasing subsequence of the array $a[0], \ldots, a[i]$, that ends at i
- Base case: we don't need one
- lis $(i)=\max \left(1, \max _{j \text { s.t. } a[j]<a[j]}\{1+\operatorname{lis}(j)\}\right)$

Longest increasing subsequence

```
int a[1000];
int mem[1000];
memset(mem, -1, sizeof(mem));
int lis(int i) {
    if (mem[i] != -1) {
        return mem[i];
    }
    int res = 1;
    for (int j = 0; j < i; j++) {
        if (a[j] < a[i]) {
        res = max(res, 1 + lis(j));
        }
    }
    mem[i] = res;
    return res;
}
```


Longest increasing subsequence

- And then the longest increasing subsequence can be found by checking all endpoints:

```
int mx = 0;
for (int i = 0; i < n; i++) {
    mx = max(mx, lis(i));
}
printf("%d\n", mx);
```


Longest increasing subsequence

- Time complexity?
- There are n possible inputs
- Each input is computed in $O(n)$ time, assuming recursive calls are $O(1)$
- Total time complexity is $O\left(n^{2}\right)$
- This will be fast enough for $n \leq 10000$, much better than the brute force method!

Longest common subsequence

- Given two strings (or arrays of integers) a[0], ..., $a[n-1]$ and $b[0], \ldots, b[m-1]$, find the length of the longest subsequence that they have in common.
- $a=$ "bananinn"
- $b=$ "kaninan"
- The longest common subsequence of a and b, "aninn", has length 5

Longest common subsequence

- Let $\operatorname{lcs}(i, j)$ be the length of the longest common subsequence of the strings $a[0], \ldots, a[i]$ and $b[0], \ldots$, $b[j]$
- Base case: $\operatorname{lcs}(-1, j)=0$
- Base case: $\operatorname{lcs}(i,-1)=0$
$-\operatorname{lcs}(i, j)=\max \left\{\begin{array}{l}\operatorname{lcs}(i, j-1) \\ \operatorname{lcs}(i-1, j) \\ 1+\operatorname{lcs}(i-1, j-1) \quad \text { if } a[i]=b[j]\end{array}\right.$

Longest common subsequence

```
string a = "bananinn",
    b = "kaninan";
int mem[1000][1000];
memset(mem, -1, sizeof(mem));
int lcs(int i, int j) {
    if (i == -1 || j == -1) {
        return 0;
    }
    if (mem[i][j] != -1) {
        return mem[i][j];
    }
    int res = 0;
    res = max(res, lcs(i, j - 1));
    res = max(res, lcs(i - 1, j));
    if (a[i] == b[j]) {
        res = max(res, 1 + lcs(i - 1, j - 1));
    }
    mem[i][j] = res;
    return res;
}
```


Longest common subsequence

- Time complexity?
- There are $n \times m$ possible inputs
- Each input is processed in $O(1)$, assuming recursive calls are $O(1)$
- Total time complexity is $O(n \times m)$

DP over bitmasks

- Remember the bitmask representation of subsets?
- Each subset of n elements are mapped to an integer in the range $0, \ldots, 2^{n}-1$
- This makes it easy to do dynamic programming over subsets

Traveling salesman problem

- We have a graph of n vertices, and a cost $c_{i, j}$ between each pair of vertices i, j. We want to find a cycle through all vertices in the graph so that the sum of the edge costs in the cycle is minimal.
- This problem is NP-Hard, so there is no known deterministic polynomial time algorithm that solves it
- Simple to do in $O(n!)$ by going through all permutations of the vertices, but that's too slow if $n>11$
- Can we go higher if we use dynamic programming?

Traveling salesman problem

- Without loss of generality, assume we start and end the cycle at vertex 0
- Let $\operatorname{tsp}(i, S)$ represent the cheapest way to go through all vertices in the graph and back to vertex 0 , if we're currently at vertex i and we've already visited the vertices in the set S
- Base case: $\operatorname{tsp}(i$, all vertices $)=c_{i, 0}$
- Otherwise $\operatorname{tsp}(i, S)=\min _{j \notin S}\left\{c_{i, j}+\operatorname{tsp}(j, S \cup\{j\})\right\}$

Traveling salesman problem

```
const int N = 20;
const int INF = 100000000;
int c[N][N];
int mem[N][1<<N];
memset(mem, -1, sizeof(mem));
int tsp(int i, int S) {
    if (S == ((1 << N) - 1)) {
        return c[i][0];
    }
    if (mem[i][S] != -1) {
        return mem[i][S];
    }
    int res = INF;
    for (int j = 0; j < N; j++) {
        if (S & (1 << j))
                continue;
        res = min(res, c[i][j] + tsp(j, S | (1<< j)));
    }
    mem[i][S] = res;
    return res;
}
```


Traveling salesman problem

- Then the optimal solution can be found as follows:

$$
\text { printf(} \| \% \mathrm{~d} \backslash \mathrm{n} ", \operatorname{tsp}(0,1 \ll 0)) \text {; }
$$

Traveling salesman problem

- Time complexity?
- There are $n \times 2^{n}$ possible inputs
- Each input is computed in $O(n)$ assuming recursive calls are $O(1)$
- Total time complexity is $O\left(n^{2} 2^{n}\right)$
- Now n can go up to about 20

Traveling salesman problem

