Mathematics

Tómas Ken Magnússon
Bjarki Ágúst Guờmundsson

School of Computer Science
Reykjavík University

Árangursík forritun og lausn verkefna

Today we're going to cover

- Basics
- Number Theory
- Combinatorics
- Game Theory

Mathematics

- Basics
- Number Theory
- Combinatorics
- Game Theory

General overview

Computer Science \subset Mathematics

General overview

- Usually at least one problem that involves solving mathematically.
- Problems often require mathematical analysis to be solved efficiently.
- Using a bit of math before coding can also shorten and simplify code.

Finding patterns and formulas

- Some problems have solutions that form a pattern.

Finding patterns and formulas

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.

Finding patterns and formulas

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
- Solve some small instances by hand.
- See if the solutions form a pattern.

Finding patterns and formulas

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
- Solve some small instances by hand.
- See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem?

Finding patterns and formulas

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
- Solve some small instances by hand.
- See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem? We might need to use DP.

Finding patterns and formulas

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
- Solve some small instances by hand.
- See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem? We might need to use DP.
- Knowing reoccurring identities and sequences can be helpful.

Arithmetic progression

- Often we see a pattern like

$$
2,5,8,11,14,17,20, \ldots
$$

Arithmetic progression

- Often we see a pattern like

$$
2,5,8,11,14,17,20, \ldots
$$

- This is called a arithmetic progression.

$$
a_{n}=a_{n-1}+c
$$

Arithmetic progression

- Depending on the situation we may want to get the n-th element

$$
a_{n}=a_{1}+(n-1) c
$$

- Or the sum over a finite portion of the progression

$$
S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}
$$

Arithmetic progression

- Depending on the situation we may want to get the n-th element

$$
a_{n}=a_{1}+(n-1) c
$$

- Or the sum over a finite portion of the progression

$$
S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}
$$

- Remember this one?

$$
1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}
$$

Geometric progression

- Other types of pattern we often see are geometric progressions

$$
1,2,4,8,16,32,64,128, \ldots
$$

Geometric progression

- Other types of pattern we often see are geometric progressions

$$
1,2,4,8,16,32,64,128, \ldots
$$

- More generally

$$
\begin{gathered}
a, a r, a r^{2}, a r^{3}, a r^{4}, a r^{5}, a r^{6}, \ldots \\
a_{n}=a r^{n-1}
\end{gathered}
$$

Geometric progression

- Sum over a finite portion

$$
\sum_{i=0}^{n} a r^{i}=\frac{a\left(1-r^{n}\right)}{(1-r)}
$$

Geometric progression

- Sum over a finite portion

$$
\sum_{i=0}^{n} a r^{i}=\frac{a\left(1-r^{n}\right)}{(1-r)}
$$

- Or from the m-th element to the n-th

$$
\sum_{i=m}^{n} a r^{i}=\frac{a\left(r^{m}-r^{n+1}\right)}{(1-r)}
$$

Little bit about logarithm

- Sometimes doing computation in logarithm can be an efficient alternative.

Little bit about logarithm

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++(<cmath>) and Java(java. lang. Math) we have the natural logarithm
double log(double x);

Little bit about logarithm

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++(<cmath>) and Java(java. lang. Math) we have the natural logarithm
double log(double x);
and logarithm in base 10

$$
\text { double } \log 10(d o u b l e ~ x) ;
$$

Little bit about logarithm

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++(<cmath>) and Java(java. lang. Math) we have the natural logarithm

$$
\text { double } \log (d o u b l e ~ x) ;
$$

and logarithm in base 10

$$
\text { double } \log 10(\text { double } x) \text {; }
$$

- And also the exponential
double exp(double x);

Example

- For example, what is the first power of 17 that has k digits in base b ?

Example

- For example, what is the first power of 17 that has k digits in base b ?
- Naive solution: Iterate over powers of 17 and count the number of digits.

Example

- For example, what is the first power of 17 that has k digits in base b ?
- Naive solution: Iterate over powers of 17 and count the number of digits.
- But the powers of 17 grow exponentially!

$$
17^{16}>2^{64}
$$

- What if $k=500\left(\sim 1.7 \cdot 10^{615}\right)$, or something larger?

Example

- For example, what is the first power of 17 that has k digits in base b ?
- Naive solution: Iterate over powers of 17 and count the number of digits.
- But the powers of 17 grow exponentially!

$$
17^{16}>2^{64}
$$

- What if $k=500\left(\sim 1.7 \cdot 10^{615}\right)$, or something larger?
- Impossible to work with the numbers in a normal fashion.
- Why not log?

Example

- Remember, we can calculate the length of a number n in base b with $\left\lfloor\log _{b}(n)\right\rfloor+1$.

Example

- Remember, we can calculate the length of a number n in base b with $\left\lfloor\log _{b}(n)\right\rfloor+1$.
- But how do we do this with only In or $\log _{10}$?

Example

- Remember, we can calculate the length of a number n in base b with $\left\lfloor\log _{b}(n)\right\rfloor+1$.
- But how do we do this with only In or $\log _{10}$?
- Change base!

$$
\log _{b}(a)=\frac{\log _{d}(a)}{\log _{d}(b)}=\frac{\ln (a)}{\ln (b)}
$$

- Now we can at least count the length without converting bases

Example

- We still have to iterate over the powers of 17 , but we can do that in log

$$
\ln \left(17^{x-1} \cdot 17\right)=\ln \left(17^{x-1}\right)+\ln (17)
$$

Example

- We still have to iterate over the powers of 17 , but we can do that in log

$$
\ln \left(17^{x-1} \cdot 17\right)=\ln \left(17^{x-1}\right)+\ln (17)
$$

- More generally

$$
\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)
$$

- For division

$$
\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)
$$

Example

- We can simplify this even more.
- The solution to our problem is in mathematical terms, finding the x for

$$
\log _{b}\left(17^{x}\right)=k-1
$$

Example

- We can simplify this even more.
- The solution to our problem is in mathematical terms, finding the x for

$$
\log _{b}\left(17^{x}\right)=k-1
$$

- One more handy identity

$$
\log _{b}\left(a^{c}\right)=c \cdot \log _{b}(a)
$$

Example

- We can simplify this even more.
- The solution to our problem is in mathematical terms, finding the x for

$$
\log _{b}\left(17^{x}\right)=k-1
$$

- One more handy identity

$$
\log _{b}\left(a^{c}\right)=c \cdot \log _{b}(a)
$$

- Using this identity and the ones we've covered, we get

$$
x=\left\lceil(k-1) \cdot \frac{\ln (10)}{\ln (17)}\right\rceil
$$

Base conversion

- Speaking of bases.

Base conversion

- Speaking of bases.
- What if we actually need to use base conversion?

Base conversion

- Speaking of bases.
- What if we actually need to use base conversion?
- Simple algorithm
vector<int> toBase(int base, int val) \{

```
vector<int> res;
while(val) {
    res.push_back(val % base);
    val /= base;
}
return val;
```

- Starts from the 0-th digit, and calculates the multiple of each power.

Working with doubles

Working with doubles

- Comparing doubles, sounds like a bad idea.

Working with doubles

- Comparing doubles, sounds like a bad idea.
- What else can we do if we are working with real numbers?

Working with doubles

- Comparing doubles, sounds like a bad idea.
- What else can we do if we are working with real numbers?
- We compare them to a certain degree of precision.

Working with doubles

- Comparing doubles, sounds like a bad idea.
- What else can we do if we are working with real numbers?
- We compare them to a certain degree of precision.
- Two numbers are deemed equal of their difference is less than some small epsilon.

```
const double EPS = 1e-9;
if (abs(a - b) < EPS) {
}
```


Working with doubles

- Less than operator:

$$
\begin{aligned}
& \text { if }(a<b-E P S)\{ \\
& \cdots \\
& \}
\end{aligned}
$$

- Less than or equal:

$$
\begin{aligned}
& \text { if }(\mathrm{a}<\mathrm{b}+\text { EPS })\{ \\
& \ldots \\
& \}
\end{aligned}
$$

- The rest of the operators follow.

Working with doubles

- This allows us to use comparison based algorithms.

Working with doubles

- This allows us to use comparison based algorithms.
- For example std: :set<double>.
struct cmp \{

\};
set<double, cmp> doubleSet();
- Other STL containers can be used in similar fashion.

Mathematics

\author{

- Basics
}
- Number Theory
- Combinatorics
- Game Theory

Modular arithmetic

- Problem statements often end with the sentence
"... and output the answer modulo n."

Modular arithmetic

- Problem statements often end with the sentence

"... and output the answer modulo n."

- This implies that we can do all the computation with integers modulo n.

Modular arithmetic

- Problem statements often end with the sentence

> "... and output the answer modulo n."

- This implies that we can do all the computation with integers modulo n.
- The integers, modulo some n form a structure called a ring.

Modular arithmetic

- Problem statements often end with the sentence

> "... and output the answer modulo n."

- This implies that we can do all the computation with integers modulo n.
- The integers, modulo some n form a structure called a ring.
- Special rules apply, also loads of interesting properties.

Modular arithmetic

Some of the allowed operations:

- Addition and subtraction modulo n

$$
\begin{aligned}
& (a \bmod n)+(b \bmod n)=(a+b \bmod n) \\
& (a \bmod n)-(b \bmod n)=(a-b \bmod n)
\end{aligned}
$$

- Multiplication

$$
(a \bmod n)(b \bmod n)=(a b \bmod n)
$$

- Exponentiation

$$
(a \bmod n)^{b}=\left(a^{b} \bmod n\right)
$$

- Note: We are only working with integers.

Modular arithmetic

- What about division?

Modular arithmetic

- What about division? NO!

Modular arithmetic

- What about division? NO!
- We could end up with a fraction!
- Division with k equals multiplication with the multiplicative inverse of k.

Modular arithmetic

- What about division? NO!
- We could end up with a fraction!
- Division with k equals multiplication with the multiplicative inverse of k.
- The multiplicative inverse of an integer a, is the element a^{-1} such that

$$
a \cdot a^{-1}=1 \quad(\bmod n)
$$

Modular arithmetic

- What about logarithm?

Modular arithmetic

- What about logarithm? YES!
- But difficult.

Modular arithmetic

- What about logarithm? YES!
- But difficult.
- Basis for some cryptography such as elliptic curve, Diffie-Hellmann.
- Google "Discrete Logarithm" if you want to know more.

Definitions that everybody should know

- Prime number is a positive integer greater than 1 that has no positive divisor other than 1 and itself.
- Greatest Common Divisor of two integers a and b is the largest number that divides both a and b.
- Least Common Multiple of two integers a and b is the smallest integer that both a and b divide.
- Prime factor of an positive integer is a prime number that divides it.
- Prime factorization is the decomposition of an integer into its prime factors. By the fundamental theorem of arithmetics, every integer greater than 1 has a unique prime factorization.

Extended Euclidean algorithm

- and non-extended

- The Euclidean algorithm is a recursive algorithm that computes the GCD of two numbers.
int gcd(int a, int b)\{

$$
\text { return } \mathrm{b}==0 \text { ? } \mathrm{a}: \operatorname{gcd}(\mathrm{b}, \mathrm{a} \% \mathrm{~b}) \text {; }
$$

\}

- Runs in $O\left(\log ^{2} N\right)$.

Extended Euclidean algorithm

- and non-extended

- The Euclidean algorithm is a recursive algorithm that computes the GCD of two numbers.
int $\operatorname{gcd}(i n t \mathrm{a}$, int b$)\{$

$$
\text { return } \mathrm{b}==0 \text { ? } \mathrm{a}: \operatorname{gcd}(\mathrm{b}, \mathrm{a} \% \mathrm{~b}) \text {; }
$$

\}

- Runs in $O\left(\log ^{2} N\right)$.
- Notice that this can also compute LCM

$$
\operatorname{lcm}(a, b)=\frac{a \cdot b}{\operatorname{gcd}(a, b)}
$$

- See Wikipedia to see how it works and for proofs.

Extended Euclidean algorithm

- Reversing the steps of the Euclidean algorithm we get the Bézout's identity

$$
\operatorname{gcd}(a, b)=a x+b y
$$

which simply states that there always exist x and y such that the equation above holds.

Extended Euclidean algorithm

- Reversing the steps of the Euclidean algorithm we get the Bézout's identity

$$
\operatorname{gcd}(a, b)=a x+b y
$$

which simply states that there always exist x and y such that the equation above holds.

- The extended Euclidean algorithm computes the GCD and the coefficients x and y.
- Each iteration it add up how much of b we subtracted from a and vice versa.

Extended Euclidean algorithm

int egcd(int a, int b, int\& x, int\& y) \{ if (b == 0) \{
$\mathrm{x}=1$;
$\mathrm{y}=0$;
return a;
\} else \{
int $d=\operatorname{egcd}(b, a \% b, x, y)$;
$\mathrm{x}-=\mathrm{a} / \mathrm{b}$ * y ;
swap(x, y);
return d;
\}
\}

Applications

- Essential step in the RSA algorithm.
- Essential step in many factorization algorithms.
- Can be generalized to other algebraic structures.
- Fundamental tool for proofs in number theory.
- Many other algorithms for GCD

Modular inverse

Back to modular inverse.

- Working modulo n often requires division (multiplication by inverse).

Modular inverse

Back to modular inverse.

- Working modulo n often requires division (multiplication by inverse).
- Given some a $(\bmod n)$, then the multiplicative inverse $a^{-1}(\bmod n)$ exists iff. a and n are coprime.

Modular inverse

Back to modular inverse.

- Working modulo n often requires division (multiplication by inverse).
- Given some a $(\bmod n)$, then the multiplicative inverse $a^{-1}(\bmod n)$ exists iff. a and n are coprime.
- It so happens that when we have from EGCD algorithm

$$
a x+n y=\operatorname{gcd}(a, n)=1
$$

then

$$
a^{-1} \equiv x \quad(\bmod p)
$$

Modular inverse

- Hence, we have an algorithm to compute modular multiplicative inverse.
- and it reports if no such element exists, that is GCD $\neq 1$

Modular inverse

- Hence, we have an algorithm to compute modular multiplicative inverse.
- and it reports if no such element exists, that is GCD $\neq 1$
- What if n is a prime number?

Modular inverse

- Hence, we have an algorithm to compute modular multiplicative inverse.
- and it reports if no such element exists, that is GCD $\neq 1$
- What if n is a prime number?
- Then every element has an inverse.

Modular inverse

- Hence, we have an algorithm to compute modular multiplicative inverse.
- and it reports if no such element exists, that is GCD $\neq 1$
- What if n is a prime number?
- Then every element has an inverse.
- And we can use Fermat's little theorem

$$
a^{p-1} \equiv 1 \quad(\bmod n)
$$

- which implies that

$$
a^{p-1} \cdot a^{p-2} \equiv 1 \quad(\bmod n) \quad \Rightarrow \quad a^{-1}=a^{p-2} \quad(\bmod n)
$$

Modular inverse

- With n as a prime, the problem of finding the inverse now becomes only a matter of exponentiation.

Modular inverse

- With n as a prime, the problem of finding the inverse now becomes only a matter of exponentiation.
- Using the repeated squaring method, we can compute the inverse in $O(\log N)$.

Modular inverse

- With n as a prime, the problem of finding the inverse now becomes only a matter of exponentiation.
- Using the repeated squaring method, we can compute the inverse in $O(\log N)$.
- This method only works when working modulo a prime.

Chinese remainder theorem

What is the lowest number n such that when divided by
... 3 it leaves 2 in remainder.
... 5 it leaves 3 in remainder.
... 7 it leaves 2 in remainder.

Chinese remainder theorem

What is the lowest number n such that when divided by
... 3 it leaves 2 in remainder.
... 5 it leaves 3 in remainder.
... 7 it leaves 2 in remainder.
When stated mathematically, find n where

$$
\begin{aligned}
& n \equiv 2(\bmod 3) \\
& n \equiv 3(\bmod 5) \\
& n \equiv 2(\bmod 7)
\end{aligned}
$$

Chinese remainder theorem

The Chinese remainder theorem states that:

- When the moduli of a system of linear congruences are pairwise coprime, there exists a unique solution modulo the product of the moduli.

Chinese remainder theorem

The Chinese remainder theorem states that:

- When the moduli of a system of linear congruences are pairwise coprime, there exists a unique solution modulo the product of the moduli.
Let $n_{1}, n_{2}, \ldots, n_{k}$ be pairwise coprime positive integers, and let x be the solution to the system of linear congruences

$$
\begin{aligned}
& x \equiv b_{1}\left(\bmod n_{1}\right) \\
& x \equiv b_{2}\left(\bmod n_{2}\right) \\
& \vdots \\
& x \equiv b_{k}\left(\bmod n_{k}\right)
\end{aligned}
$$

Chinese remainder theorem

- The Chinese remainder theorem only states that there exists a solution and it is unique modulus the product of the moduli.
- To obtain the solution x

$$
x \equiv b_{1} c_{1} \frac{N}{n_{1}}+\ldots+b_{k} c_{k} \frac{N}{n_{k}}
$$

where $N=n_{1} n_{2} \cdots n_{k}$.

- The coefficients c_{i} are determined from

$$
c_{i} \frac{N}{n_{i}} \equiv \quad\left(\bmod n_{i}\right)
$$

(the multiplicative inverse of $\frac{N}{n_{i}}$ modulus n_{i})

- Use EGCD to compute c_{i}.

Primality testing

- How do we determine if a number n is a prime?

Primality testing

- How do we determine if a number n is a prime?
- Naive method: Iterate over all $1<i<n$ and check it $i \mid n$.
- $O(N)$

Primality testing

- How do we determine if a number n is a prime?
- Naive method: Iterate over all $1<i<n$ and check it $i \mid n$.
- $O(N)$
- Better: If n is not a prime, it has a divisor $\leq \sqrt{n}$.
- Iterate up to \sqrt{n} instead.
- $O(\sqrt{N})$

Primality testing

- How do we determine if a number n is a prime?
- Naive method: Iterate over all $1<i<n$ and check it $i \mid n$.
- $O(N)$
- Better: If n is not a prime, it has a divisor $\leq \sqrt{n}$.
- Iterate up to \sqrt{n} instead.
- $O(\sqrt{N})$
- Even better: If n is not a prime, it has a prime divisor $\leq \sqrt{n}$
- Iterate over the prime numbers up to \sqrt{n}.
- There are $\sim N / \ln (N)$ primes less N, therefore $O(\sqrt{N} / \log N)$.

Primality testing

- Trial division is a deterministic primality test.
- Many algorithms that are probabilistic or randomized.
- Fermat test; uses Fermat's little theorem.
- Probabilistic algorithms that can only prove that a number is composite such as Miller-Rabin.
- AKS primality test, the one that proved that primality testing is in P.

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:

2,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2, 3,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2, 3,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2, 3, 5,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2, 3, 5,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2, 3, 5,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
2, 3, 5, 7,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:
$2,3,5,7,11$,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:

$2,3,5,7,11,13$,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:

$2,3,5,7,11,13,17$,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:

$2,3,5,7,11,13,17,19$,

Prime sieves

- If we want to generate primes, using a primality test is very inefficient.
- Instead, our preferred method of prime generation is the sieve of Eratosthenes.
- For all numbers from 2 to \sqrt{n} :
- If the number is not marked, iterate over every multiple of the number up to n and mark them.
- The unmarked numbers are those that are not a multiple of any smaller number.
- $O(\sqrt{N} \log \log N)$

	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

Primes:

$2,3,5,7,11,13,17,19,23$

Prime sieves

```
vector<int> eratosthenes(int n){
    bool *isPrime = new bool[n];
    memset(isPrime, O, sizeof isPrime);
    vector<int> primes;
    for(int i = 2; i*i <= n; ++i){
    if(isPrime[i]) {
        primes.push_back(i);
        for(int j = i; j < n; j += i)
        isPrime[j] = false;
        }
    }
}
```


Integer factorization

The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

Integer factorization

The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots p_{k}^{e_{k}}
$$

Integer factorization

The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots p_{k}^{e_{k}}
$$

We can therefore store integers as lists of their prime powers.

Integer factorization

The fundamental theorem of arithmetic states that

- Every integer greater than 1 is a unique multiple of primes.

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots p_{k}^{e_{k}}
$$

We can therefore store integers as lists of their prime powers.

To factor an integer n :

- Use the sieve of Eratosthenes to generate all the primes up \sqrt{n}
- Iterate over all the primes generated and check if they divide n, and determine the largest power that divides n.

Integer factorization

```
map<int, int> factor(int N) {
    vector<int> primes;
    primes = eratosthenes(static_cast<int>(sqrt(N+1)))
    map<int, int> factors;
    for(int i = 0; i < primes.size(); ++i){
    int prime = primes[i], power = 0;
    while(N % prime == 0){
        power++;
        N /= prime;
    }
    if(power > 0){
    factors[prime] = power;
    }
    }
    return factors;
}

\section*{Integer factorization}

The prime factors can be quite useful.

\section*{Integer factorization}

The prime factors can be quite useful.
- The number of divisors
\[
\sigma_{0}(n)=\prod_{i=1}^{k}\left(e_{1}+1\right)
\]

\section*{Integer factorization}

The prime factors can be quite useful.
- The number of divisors
\[
\sigma_{0}(n)=\prod_{i=1}^{k}\left(e_{1}+1\right)
\]
- The sum of all divisors in \(x\)-th power
\[
\sigma_{m}(n)=\prod_{i=1}^{k} \frac{\left(p^{\left(e_{i}+1\right) x}-1\right)}{\left(p_{i}-1\right)}
\]

\section*{Integer factorization}
- The Euler's totient function
\[
\phi(n)=n \cdot \prod_{i=1}^{k}(1-p)
\]

\section*{Integer factorization}
- The Euler's totient function
\[
\phi(n)=n \cdot \prod_{i=1}^{k}(1-p)
\]
- Euler's theorem, if a and \(n\) are coprime
\[
a^{\phi(n)}=1 \quad(\bmod n)
\]

Fermat's theorem is a special case when \(n\) is a prime.

\section*{Mathematics}

\author{
- Basics
}
- Number Theory
- Combinatorics
- Game Theory

\section*{Combinatorics}

Combinatorics is study of countable discrete structures.

\section*{Combinatorics}

Combinatorics is study of countable discrete structures.
Generic enumeration problem: We are given an infinite sequence of sets \(A_{1}, A_{2}, \ldots A_{n}, \ldots\) which contain objects satisfying a set of properties. Determine
\[
a_{n}:=\left|A_{n}\right|
\]
for general \(n\).

\section*{Basic counting}
- Factorial
\[
n!=1 \cdot 2 \cdot 3 \cdots n
\]
- Binomial coefficient
\[
\binom{n}{k}=\frac{n!}{k!(n-k)!}
\]

\section*{Basic counting}
- Factorial
\[
n!=1 \cdot 2 \cdot 3 \cdots n
\]
- Binomial coefficient
\[
\binom{n}{k}=\frac{n!}{k!(n-k)!}
\]

Number of ways to choose \(k\) objects from a set of \(n\) objects, ignoring order.

\section*{Basic counting}

Properties
\[
\begin{gathered}
\binom{n}{k}=\binom{n}{n-k} \\
\binom{n}{0}=\binom{n}{n}=1 \\
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
\end{gathered}
\]

\section*{Basic counting}

\section*{Pascal triangle!}
\[
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0} \quad\binom{1}{1} \\
& \binom{2}{0}\binom{2}{1} \quad\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3} \\
& \binom{4}{0}\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4} \\
& \binom{5}{0}\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4}\binom{5}{5} \\
& \binom{6}{0}\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5}\binom{6}{6} \\
& \binom{7}{0}\binom{7}{1}\binom{7}{2}\binom{7}{3}\binom{7}{4}\binom{7}{5}\binom{7}{6}\binom{7}{7} \\
& \left(\begin{array}{llll}
\binom{8}{)}\binom{8}{1} & \binom{8}{2} & \binom{8}{3}
\end{array}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7}\binom{8}{8}\right. \\
& \binom{9}{0}\binom{9}{1}\binom{9}{2}\binom{9}{3}\binom{9}{4}\binom{9}{5}\binom{9}{6}\binom{9}{7}\binom{9}{8}\binom{9}{9} \\
& \binom{10}{0}\binom{10}{1}\binom{10}{2}\binom{10}{3}\binom{10}{4}\binom{10}{5}\binom{10}{6}\binom{10}{7}\binom{10}{8}\binom{10}{9}\binom{10}{10}
\end{aligned}
\]

\section*{Basic counting}

Other useful identities

\section*{Basic counting}

Other useful identities
\[
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
\]

\section*{Basic counting}

Other useful identities
\[
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
\end{gathered}
\]

\section*{Basic counting}

Other useful identities
\[
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
\]
\[
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
\]
- The infamous "hockey stick sum"
\[
\sum_{k=0}^{m}\binom{n+k}{k}=\binom{n+m+1}{m}
\]

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?


\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical
- 2 horizontal

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical
- 2 horizontal

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical
- 2 horizontal
- Number of ways we can choose 2 vertical lines
\[
\binom{n}{2}
\]

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical
- 2 horizontal
- Number of ways we can choose 2 horizontal lines
\[
\binom{m}{2}
\]

\section*{Example}

How many rectangles can be formed on a \(m \times n\) grid?

- A rectangle needs 4 edges, 2 vertical and 2 horizontal.
- 2 vertical
- 2 horizontal
- Total number of ways we can form a rectangle
\[
\begin{aligned}
\binom{n}{2}\binom{m}{2} & =\frac{n!m!}{(n-2)!(m-2)!2!2!} \\
& =\frac{n(n-1) m(m-1)}{4}
\end{aligned}
\]

\section*{Multinomial}

What if we have many objects with the same value?

\section*{Multinomial}

What if we have many objects with the same value?
- Number of permutations on \(n\) objects, where \(n_{i}\) is the number of objects with the \(i\)-th value.(Multinomial)
\[
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
\]

\section*{Multinomial}

What if we have many objects with the same value?
- Number of permutations on \(n\) objects, where \(n_{i}\) is the number of objects with the \(i\)-th value.(Multinomial)
\[
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
\]
- Number of way to choose \(k\) objects from a set of \(n\) objects with, where each value can be chosen more than once.
\[
\binom{n+k-1}{k}=\frac{(n+k-1)!}{k!(n-1)!}
\]

\section*{Example}

How many different ways can we divide \(k\) identical balls into \(n\) boxes?

\section*{Example}

How many different ways can we divide \(k\) identical balls into \(n\) boxes?
- Same as number of nonnegative solutions to
\[
x_{1}+x_{2}+\ldots+x_{n}=k
\]

\section*{Example}

How many different ways can we divide \(k\) identical balls into \(n\) boxes?
- Same as number of nonnegative solutions to
\[
x_{1}+x_{2}+\ldots+x_{n}=k
\]
- Let's imagine we have a bit string consisting only of 1 of length \(n+k-1\)
\[
\underbrace{111111 \ldots 1}_{n+k-1}
\]

\section*{Example}
- Choose \(n-1\) bits to be swapped for 0
\[
1 \ldots 101 \ldots 10 \ldots 01 \ldots 1
\]

\section*{Example}
- Choose \(n-1\) bits to be swapped for 0
\[
\underbrace{1 \ldots 1}_{x_{1}} 0 \underbrace{1 \ldots 1}_{x_{2}} 0 \ldots 0 \underbrace{1 \ldots 1}_{x_{n}}
\]
- Then total number of 1 will be \(k\), each 1 representing an each element, and separated into \(n\) groups

\section*{Example}
- Choose \(n-1\) bits to be swapped for 0
\[
\underbrace{1 \ldots 1}_{x_{1}} 0 \underbrace{1 \ldots 1}_{x_{2}} 0 \ldots 0 \underbrace{1 \ldots 1}_{x_{n}}
\]
- Then total number of 1 will be \(k\), each 1 representing an each element, and separated into \(n\) groups
- Number of ways to choose the bits to swap
\[
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
\]

\section*{Binomial coefficients}

How many different lattice paths are there from \((0,0)\) to ( \(n, m\) )?


\section*{Binomial coefficients}

How many different lattice paths are there from \((0,0)\) to ( \(n, m\) )?

- There is 1 path to \((0,0)\)

\section*{Binomial coefficients}

How many different lattice paths are there from \((0,0)\) to
\((n, m)\) ?

- There is 1 path to \((0,0)\)
- There is 1 path to \((1,0)\) and \((0,1)\)

\section*{Binomial coefficients}

How many different lattice paths are there from \((0,0)\) to
\((n, m)\) ?

- There is 1 path to \((0,0)\)
- There is 1 path to \((1,0)\) and \((0,1)\)
- Paths to \((1,1)\) is the sum of number of paths to \((0,1)\) and \((1,0)\).

\section*{Binomial coefficients}

How many different lattice paths are there from \((0,0)\) to
\((n, m)\) ?

- There is 1 path to \((0,0)\)
- There is 1 path to \((1,0)\) and \((0,1)\)
- Paths to \((1,1)\) is the sum of number of paths to \((0,1)\) and \((1,0)\).
- Number of paths to \((i, j)\) is the sum of the number of paths to ( \(i-1, j\) ) and \((i, j-1)\).

\section*{Binomial coefficients}

How many different lattice paths are there from \((0,0)\) to
\((n, m)\) ?

- There is 1 path to \((0,0)\)
- There is 1 path to \((1,0)\) and \((0,1)\)
- Paths to \((1,1)\) is the sum of number of paths to \((0,1)\) and \((1,0)\).
- Number of paths to \((i, j)\) is
\[
\binom{i+j}{i}
\]

\section*{Catalan}

What if we are not allowed to cross the main diagonal?


\section*{Catalan}

What if we are not allowed to cross the main diagonal?
- The number of paths from \((0,0)\) to \((n, m)\)
\[
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
\]

\section*{Catalan}

What if we are not allowed to cross the main diagonal?

- The number of paths from \((0,0)\) to \((n, m)\)
\[
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
\]
- \(C_{n}\) are known as Catalan numbers.
- Many problems involve solutions given by the Catalan numbers.

\section*{Catalan}
- Number of different ways \(n+1\) factors can be completely parenthesized.
\(((a b) c) d \quad(a(b c)) d \quad(a b)(c d) \quad a((b c) d) \quad a(b(c d))\)

\section*{Catalan}
- Number of different ways \(n+1\) factors can be completely parenthesized.
\[
((a b) c) d \quad(a(b c)) d \quad(a b)(c d) \quad a((b c) d) \quad a(b(c d))
\]
- Number of stack sortable permutations of length \(n\).

\section*{Catalan}
- Number of different ways \(n+1\) factors can be completely parenthesized.
\[
((a b) c) d \quad(a(b c)) d \quad(a b)(c d) \quad a((b c) d) \quad a(b(c d))
\]
- Number of stack sortable permutations of length \(n\).
- Number of different triangulations convex polygon with \(n+2\) sides


\section*{Catalan}
- Number of different ways \(n+1\) factors can be completely parenthesized.
\[
((a b) c) d \quad(a(b c)) d \quad(a b)(c d) \quad a((b c) d) \quad a(b(c d))
\]
- Number of stack sortable permutations of length \(n\).
- Number of different triangulations convex polygon with \(n+2\) sides

- Number of full binary trees with \(n+1\) leaves.

\section*{Catalan}
- Number of different ways \(n+1\) factors can be completely parenthesized.
\[
((a b) c) d \quad(a(b c)) d \quad(a b)(c d) \quad a((b c) d) \quad a(b(c d))
\]
- Number of stack sortable permutations of length \(n\).
- Number of different triangulations convex polygon with \(n+2\) sides

- Number of full binary trees with \(n+1\) leaves.
- And aloot more.

\section*{Fibonacci}

The Fibonacci sequence is defined recursively as
\[
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n} & =f_{n-1}+f_{n-2}
\end{aligned}
\]

\section*{Fibonacci}

The Fibonacci sequence is defined recursively as
\[
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n} & =f_{n-1}+f_{n-2}
\end{aligned}
\]

Already covered how to calculate \(f_{n}\) in \(O(N)\) time with dynamic programming.

\section*{Fibonacci}

The Fibonacci sequence is defined recursively as
\[
\begin{aligned}
f_{1} & =1 \\
f_{2} & =1 \\
f_{n} & =f_{n-1}+f_{n-2}
\end{aligned}
\]

Already covered how to calculate \(f_{n}\) in \(O(N)\) time with dynamic programming.
But we can do even better.

\section*{Fibonacci as matrix}

The Fibonacci sequence can be represented by a vectors
\[
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
\]

\section*{Fibonacci as matrix}

The Fibonacci sequence can be represented by a vectors
\[
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
\]

Or simply as a matrix
\[
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)
\]

\section*{Fibonacci as matrix}

The Fibonacci sequence can be represented by a vectors
\[
\binom{f_{n+2}}{f_{n+1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n+1}}{f_{n}}
\]

Or simply as a matrix
\[
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)
\]

Using fast exponentiaton, we can calculate \(f_{n}\) in \(O(\log N)\) time.

\section*{Fibonacci as matrix}

Any linear recurrence
\[
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2} \ldots c_{k} a_{n-k}
\]
can be expressed in the same way
\[
\left(\begin{array}{c}
a_{n+1} \\
a_{n} \\
\vdots \\
a_{n-k}
\end{array}\right)=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{k} \\
1 & 0 & \ldots & 0 \\
\vdots & & \vdots & \\
0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
a_{n} \\
a_{n-1} \\
\vdots \\
a_{n-k-1}
\end{array}\right)
\]

\section*{Fibonacci as matrix}

Any linear recurrence
\[
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2} \ldots c_{k} a_{n-k}
\]
can be expressed in the same way
\[
\left(\begin{array}{c}
a_{n+1} \\
a_{n} \\
\vdots \\
a_{n-k}
\end{array}\right)=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{k} \\
1 & 0 & \ldots & 0 \\
\vdots & & \vdots & \\
0 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
a_{n} \\
a_{n-1} \\
\vdots \\
a_{n-k-1}
\end{array}\right)
\]

With a recurrence relation defined as a linear function of the \(k\) preceding terms the running time will be \(O\left(k^{3} \log N\right)\).

\section*{Mathematics}

\author{
- Basics
}
- Number Theory
- Combinatorics
- Game Theory

\section*{Game theory}

Game theory is the study of strategic decision making, but in competitive programming we are mostly interested in combinatorial games.

\section*{Game theory}

Game theory is the study of strategic decision making, but in competitive programming we are mostly interested in combinatorial games.
Example:
- There is a pile of \(k\) matches.
- Player can remove 1, 2 or 3 from the pile and alternate on moves.
- The player who removes the last match wins.
- There are two players, and the first player starts.
- Assuming that both players play perfectly, who wins?

\section*{Game theory}

We can analyse these types of games with backward induction.

\section*{Game theory}

We can analyse these types of games with backward induction.
We call a state \(N\)-position if it is a winning state for the next player to move, and \(P\)-position if it is a winning position for the previous player.
- All terminal positions are P-positions.
- If every reachable state from the current one is a \(N\)-position then the current state is a \(P\)-position.
- If at least one \(P\)-position can be reached from the current one, then the current state is a \(N\)-position.
- A position is a \(P\)-position if all reachable states form the current one are \(N\) position.

\section*{Game theory}

Let's analyse our previous game.

\section*{Game theory}

Let's analyse our previous game.
- The terminal position is a \(P\)-position.
\begin{tabular}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \(\ldots\) \\
\hline\(P\) & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Game theory}

Let's analyse our previous game.
- The terminal position is a \(P\)-position.
- The positions reachable from the terminal positions are \(N\)-positions.
\begin{tabular}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \(\ldots\) \\
\hline\(P\) & \(N\) & \(N\) & \(N\) & & & & & & & & & &
\end{tabular}

\section*{Game theory}

Let's analyse our previous game.
- The terminal position is a \(P\)-position.
- The positions reachable from the terminal positions are N -positions.
- Position 4 can only reach \(N\)-positions, therefore a \(P\) position.
\begin{tabular}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \(\ldots\) \\
\hline\(P\) & \(N\) & \(N\) & \(N\) & \(P\) & & & & & & & & &
\end{tabular}

\section*{Game theory}

Let's analyse our previous game.
- The terminal position is a \(P\)-position.
- The positions reachable from the terminal positions are \(N\)-positions.
- Position 4 can only reach \(N\)-positions, therefore a \(P\) position.
- The next 3 positions can reach the \(P\)-position 4, therefore they are N -positions.
\begin{tabular}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \(\ldots\) \\
\hline\(P\) & \(N\) & \(N\) & \(N\) & \(P\) & \(N\) & \(N\) & \(N\) & & & & & &
\end{tabular}

\section*{Game theory}

Let's analyse our previous game.
- The terminal position is a P-position.
- The positions reachable from the terminal positions are \(N\)-positions.
- Position 4 can only reach \(N\)-positions, therefore a \(P\) position.
- The next 3 positions can reach the \(P\)-position 4, therefore they are N -positions.
- And so on.
\begin{tabular}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \(\ldots\) \\
\hline\(P\) & \(N\) & \(N\) & \(N\) & \(P\) & \(N\) & \(N\) & \(N\) & \(P\) & \(N\) & \(N\) & \(N\) & \(P\) & \(\ldots\)
\end{tabular}

\section*{Game theory}

We can see a clear pattern of the \(N\) and \(P\) positions in the previous game. - Easy to prove that a position is \(P\) if \(x \equiv 0(\bmod p)\).

\section*{Game theory}

We can see a clear pattern of the \(N\) and \(P\) positions in the previous game. - Easy to prove that a position is \(P\) if \(x \equiv 0(\bmod p)\).
- Many games can be analyzed this way.
- Not only one dimensional games.

\section*{Game theory}

We can see a clear pattern of the \(N\) and \(P\) positions in the previous game. - Easy to prove that a position is \(P\) if \(x \equiv 0(\bmod p)\).
- Many games can be analyzed this way.
- Not only one dimensional games.
- What if there are \(n\) piles instead of 1 ?

\section*{Game theory}

We can see a clear pattern of the \(N\) and \(P\) positions in the previous game. - Easy to prove that a position is \(P\) if \(x \equiv 0(\bmod p)\).
- Many games can be analyzed this way.
- Not only one dimensional games.
- What if there are \(n\) piles instead of 1 ?
- What if we can remove 1,3 or 4 ?

\section*{The game called Nim}
- There are \(n\) piles, each containing \(x_{i}\) chips.
- Player can remove from exactly one pile, and can remove any number of chips.
- The player who removes the last match wins.
- There are two players, and the first player starts and they alternate on moves.
- Assuming that both players play perfectly, who wins?

\section*{The game called Nim}

Nim can be analyzed with \(N\) and \(P\) position.

\section*{The game called Nim}

Nim can be analyzed with \(N\) and \(P\) position.
- Not trivial to generalize over \(n\) piles.

\section*{The game called Nim}

Nim can be analyzed with \(N\) and \(P\) position.
- Not trivial to generalize over \(n\) piles.
- Luckily someone has already done that for us.

\section*{The game called Nim}

Nim can be analyzed with \(N\) and \(P\) position.
- Not trivial to generalize over \(n\) piles.
- Luckily someone has already done that for us.

Buton's theorem states that a position \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) in Nim is a \(P\)-position if and only if the xor over the number of chips is 0 .

\section*{The game called Nim}

Nim can be analyzed with \(N\) and \(P\) position.
- Not trivial to generalize over \(n\) piles.
- Luckily someone has already done that for us.

Buton's theorem states that a position \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) in Nim is a \(P\)-position if and only if the xor over the number of chips is 0 .

This theorem extends to other sums of combinatorial games!

\section*{The game called Nim}

Games can often also be viewed as graphs.

\section*{The game called Nim}

Games can often also be viewed as graphs.
- Node for each state in the game.
- The edges are transitions from one state to the next.

\section*{The game called Nim}

Games can often also be viewed as graphs.
- Node for each state in the game.
- The edges are transitions from one state to the next.

Like the first subtraction game.


We often denote the set of states(vertices) as \(X\) instead of \(V\) and edges as \(F\) instead of \(E\).

\section*{Sprague-Grundy}

Games can also be analysed with the Sprague-Grundy function.
- The Sprague-Grundy function of a graph \((X, F)\), is a function \(g\) defined on \(X\) and taking non-negative integer values such that
\[
g(x)=\min \{n \geq: n \neq g(y)\}
\]

\section*{Sprague-Grundy}

Games can also be analysed with the Sprague-Grundy function.
- The Sprague-Grundy function of a graph \((X, F)\), is a function \(g\) defined on \(X\) and taking non-negative integer values such that
\[
g(x)=\min \{n \geq: n \neq g(y)\}
\]
- The smallest non-negative integer among the Sprague-Grundy values of the followers of \(x\) (states which \(x\) has an edge to).

\section*{Sprague-Grundy}

The smallest non-negative integer not among a set of non-negative integers is called the minimal excludant, or mex.

\section*{Sprague-Grundy}

The smallest non-negative integer not among a set of non-negative integers is called the minimal excludant, or mex.
For example:
- The minimal excludant of \(\{0,1,2,5,6\}\) is 3 .
- The minimal excludant of \(\{1,2,3,4,5\}\) is 0 .

\section*{Sprague-Grundy}

The smallest non-negative integer not among a set of non-negative integers is called the minimal excludant, or mex.
For example:
- The minimal excludant of \(\{0,1,2,5,6\}\) is 3 .
- The minimal excludant of \(\{1,2,3,4,5\}\) is 0 .

We can redefine the Sprague-Grundy function
\[
g(x)=\operatorname{mex}\{g(y): y \in F(x)\}
\]

\section*{Sprague-Grundy}

The graph of the previous game.


\section*{Sprague-Grundy}

The graph of the previous game.
Adding the Sprague-Grundy value.


\section*{Sprague-Grundy}

The graph of the previous game.
Adding the Sprague-Grundy value.


Position \(x\) is a \(P\) position iff. \(g(x)=0\).

\section*{Sum of combinatorial games}

\author{
Back to Nim
}
- Easy to see that for a position \(x\) in Nim, \(g(x)=x\).

\section*{Sum of combinatorial games}

Back to Nim
- Easy to see that for a position \(x\) in \(\operatorname{Nim}, g(x)=x\).
- What is the Sprague-Grundy value for multiple piles?

\section*{Sum of combinatorial games}

Back to Nim
- Easy to see that for a position \(x\) in \(\operatorname{Nim}, g(x)=x\).
- What is the Sprague-Grundy value for multiple piles?

If \(g_{i}\) is the Sprague-Grundy function of \(G_{i}, i=1,2, \ldots, n\), then \(G=G_{1}+G_{2}+\ldots+G_{n}\) has the Sprague-Grundy function
\[
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right) \oplus \ldots \oplus g_{n}\left(x_{n}\right)
\]

\section*{Sum of combinatorial games}

Back to Nim
- Easy to see that for a position \(x\) in \(\operatorname{Nim}, g(x)=x\).
- What is the Sprague-Grundy value for multiple piles?

If \(g_{i}\) is the Sprague-Grundy function of \(G_{i}, i=1,2, \ldots, n\), then \(G=G_{1}+G_{2}+\ldots+G_{n}\) has the Sprague-Grundy function
\[
g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right) \oplus \ldots \oplus g_{n}\left(x_{n}\right)
\]

The sum of games can simply be thought of as the cartesian product of the positions, but each move consists of a move in one game. Just like Nim, where we can only remove chips from one pile.

\section*{Sum of combinatorial games}

For example, if we have one pile which we can remove 1,2 or 3 and another one where we can remove any number of chips.

\section*{Sum of combinatorial games}

For example, if we have one pile which we can remove 1,2 or 3 and another one where we can remove any number of chips.
- The Sprague-Grundy function of the first game is
\[
g_{1}(x)=x \quad(\bmod 4)
\]
- The Sprague-Grundy function of the second game is
\[
g_{2}(x)=x
\]

\section*{Sum of combinatorial games}

For example, if we have one pile which we can remove 1,2 or 3 and another one where we can remove any number of chips.
- The Sprague-Grundy function of the first game is
\[
g_{1}(x)=x \quad(\bmod 4)
\]
- The Sprague-Grundy function of the second game is
\[
g_{2}(x)=x
\]

What are the \(P\) positions?

\section*{Sum of combinatorial games}

For example, if we have one pile which we can remove 1,2 or 3 and another one where we can remove any number of chips.
- The Sprague-Grundy function of the first game is
\[
g_{1}(x)=x \quad(\bmod 4)
\]
- The Sprague-Grundy function of the second game is
\[
g_{2}(x)=x
\]

What are the \(P\) positions?
- Is \((7,5)\) a \(P\) position?
\[
g_{1}(7) \oplus g_{2}(5)=3 \oplus 5=6
\]

\section*{Sum of combinatorial games}

For example, if we have one pile which we can remove 1,2 or 3 and another one where we can remove any number of chips.
- The Sprague-Grundy function of the first game is
\[
g_{1}(x)=x \quad(\bmod 4)
\]
- The Sprague-Grundy function of the second game is
\[
g_{2}(x)=x
\]

What are the \(P\) positions?
- Is \((7,5)\) a \(P\) position?
\[
\begin{equation*}
g_{1}(7) \oplus g_{2}(5)=3 \oplus 5=6 \tag{No}
\end{equation*}
\]

\section*{Applications}

Game theory is much more than just combinatorial game theory.

\section*{Applications}

Game theory is much more than just combinatorial game theory.
Applications:
- Business
- Economics
- Sociology
- Psychology
- Many fields of mathematics, including computer science.

\section*{Applications}

Game theory is much more than just combinatorial game theory.
Applications:
- Business
- Economics
- Sociology
- Psychology
- Many fields of mathematics, including computer science.

Take the Game Theory course if you want to know more.```

