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Today we’re going to cover

▶ Graph basics
▶ Graph representation (recap)
▶ Depth-first search
▶ Connected components
▶ DFS tree
▶ Bridges
▶ Strongly connected components
▶ Topological sort
▶ Breadth-first search
▶ Shortest paths in unweighted graphs
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What is a graph?

▶ Vertices
– Road intersections
– Computers
– Floors in a house
– Objects

▶ Edges
– Roads
– Ethernet cables
– Stairs or elevators
– Relation between objects
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Types of edges
▶ Unweighted

or Weighted
▶ Undirected or Directed
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Multigraphs

▶ Multiple edges
▶ Self-loops
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Adjacency list

0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2

vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(3);
adj[3].push_back(2);
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Adjacency list (directed)

0: 1
1: 2
2: 0, 1, 3
3:

vector<int> adj[4];
adj[0].push_back(1);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(3);
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Vertex properties (undirected graph)

▶ Degree of a vertex
– Number of adjacent edges
– Number of adjacent vertices

▶ Handshaking lemma∑
v∈V

deg(v) = 2|V|

2 + 2 + 3 + 1 = 2× 4
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Vertex properties (undirected graph)

0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2

adj[0].size() // 2
adj[1].size() // 2
adj[2].size() // 3
adj[3].size() // 1
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Vertex properties (directed graph)
▶ Outdegree of a vertex

– Number of outgoing edges

▶ Indegree of a vertex
– Number of incoming edges
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Vertex properties (directed graph)
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Vertex properties (directed graph)
▶ Outdegree of a vertex

– Number of outgoing edges
▶ Indegree of a vertex

– Number of incoming edges
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Adjacency list (directed)

0: 1
1: 2
2: 0, 1, 3
3:

adj[0].size() // 1
adj[1].size() // 1
adj[2].size() // 3
adj[3].size() // 0
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Paths
▶ Path / Walk / Trail:

e1e2 . . . ek

such that

ei ∈ E

ei = ej ⇒ i = j
to(ei) = from(ei+1)
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Cycles
▶ Cycle / Circuit / Tour:

e1e2 . . . ek

such that

ei ∈ E

ei = ej ⇒ i = j
to(ei) = from(ei+1)

from(e1) = to(ek)
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Depth-first search

▶ Given a graph (either directed or undirected) and two
vertices u and v, does there exist a path from u to v?

▶ Depth-first search is an algorithm for finding such a
path, if one exists

▶ It traverses the graph in depth-first order, starting
from the initial vertex u

▶ We don’t actually have to specify a v, since we can
just let it visit all reachable vertices from u (and still
same time complexity)

▶ But what is the time complexity?
▶ Each vertex is visited once, and each edge is
traversed once

▶ O(n+m)
14



Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
vector<int> adj[1000];
vector<bool> visited(1000, false);

void dfs(int u) {
if (visited[u]) {

return;
}

visited[u] = true;

for (int i = 0; i < adj[u].size(); i++) {
int v = adj[u][i];
dfs(v);

}
}
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Connected components

▶ An undirected graph can be partitioned into
connected components

▶ A connected component is a maximal subset of the
vertices such that each pair of vertices is reachable
from each other

▶ We’ve already seen this in a couple of problems, but
we’ve been using Union-Find to keep track of the
components
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Connected components

▶ Also possible to find these components using
depth-first search

▶ Pick some vertex we don’t know anything about, and
do a depth-first search out from it

▶ All vertices reachable from that starting vertex are in
the same component

▶ Repeat this process until you have all the components
▶ Time complexity is O(n+m)
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Connected components
vector<int> adj[1000];
vector<int> component(1000, -1);

void find_component(int cur_comp, int u) {
if (component[u] != -1) {

return;
}

component[u] = cur_comp;

for (int i = 0; i < adj[u].size(); i++) {
int v = adj[u][i];
find_component(cur_comp, v);

}
}

int components = 0;
for (int u = 0; u < n; u++) {

if (component[u] == -1) {
find_component(components, u);
components++;

}
}
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Depth-first search tree

▶ When we do a depth-first search from a certain
vertex, the path that we take forms a tree

▶ When we go from a vertex to another vertex that we
haven’t visited before, the edge that we take is called
a forward edge

▶ When we go from a vertex to another vertex that
we’ve already visited before, the edge that we take is
called a backward edge

▶ To be more specific: the forward edges form a tree

▶ see example
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Depth-first search tree

▶ This tree of forward edges, along with the backward
edges, can be analyzed to get a lot of information
about the original graph

▶ For example: a backward edge represents a cycle in
the original graph

▶ If there are no backward edges, then there are no
cycles in the original graph (i.e. the graph is acyclic)
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Analyzing the DFS tree

▶ Let’s take a closer look at the depth-first search tree

▶ First, let’s number each of the vertices in the order
that we visit them in the depth-first search

▶ For each vertex, we want to know the smallest
number of a vertex that we visited when exploring the
subtree rooted at the current vertex

▶ Why? We’ll see in a bit..

▶ see example
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Analyzing the DFS tree
const int n = 1000;
vector<int> adj[n];
vector<int> low(n), num(n, -1);
int curnum = 0;

void analyze(int u, int p) {
low[u] = num[u] = curnum++;
for (int i = 0; i < adj[u].size(); i++) {

int v = adj[u][i];
if (v == p) continue;
if (num[v] == -1) {

analyze(v, u);
low[u] = min(low[u], low[v]);

} else {
low[u] = min(low[u], num[v]);

}
}

}

for (int u = 0; u < n; u++) {
if (num[u] == -1) {

analyze(u, -1);
}

}
24



Analyzing the DFS tree

▶ Time complexity of this is just O(n+m), since this is
basically just one depth-first search

▶ Now, as promised, let’s see some applications of this
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Bridges

▶ We have an undirected graph
▶ Without loss of generality, assume it is connected (i.e.
one big connected component)

▶ Find an edge, so that if you remove that edge the
graph is no longer connected

▶ Naive algorithm: Try removing edges, one at a time,
and finding the connected components of the
resulting graph

▶ That’s pretty inefficient, O(m(n+m))
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Bridges

▶ Let’s take a look at the values that we computed in
the DFS tree

▶ We see that a forward edge (u, v) is a bridge if and
only if low[v] >num[u]

▶ Simple to extend our analyze function to return all
bridges

▶ Again, this is just O(n+m)
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Bridges
const int n = 1000;
vector<int> adj[n];
vector<int> low(n), num(n, -1);
int curnum = 0;

vector<pair<int, int> > bridges;

void find_bridges(int u, int p) {
low[u] = num[u] = curnum++;
for (int i = 0; i < adj[u].size(); i++) {

int v = adj[u][i];
if (v == p) continue;
if (num[v] == -1) {

find_bridges(v, u);
low[u] = min(low[u], low[v]);

} else {
low[u] = min(low[u], num[v]);

}

if (low[v] > num[u]) {
bridges.push_back(make_pair(u, v));

}
}

}

for (int u = 0; u < n; u++) {
if (num[u] == -1) {

find_bridges(u, -1);
}

}
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Strongly connected components

▶ We know how to find connected components in
undirected graphs

▶ But what about directed graphs?

▶ Such components behave a bit differently in directed
graphs, especially since if v is reachable from u, it
doesn’t mean that u is reachable from v

▶ The definition remains the same, though
▶ A strongly connected component is a maximal subset
of the vertices such that each pair of vertices is
reachable from each other
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Strongly connected components

▶ The connected components algorithm won’t work
here

▶ Instead we can use the depth-first search tree of the
graph to find these components

▶ see example
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Strongly connected components
vector<int> adj[100];
vector<int> low(100), num(100, -1);
vector<bool> incomp(100, false);
int curnum = 0;

stack<int> comp;

void scc(int u) {

// scc code...
}

for (int i = 0; i < n; i++) {
if (num[i] == -1) {

scc(i);
}

}
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Strongly connected components
void scc(int u) {

comp.push(u);
incomp[u] = true;

low[u] = num[u] = curnum++;
for (int i = 0; i < adj[u].size(); i++) {

int v = adj[u][i];
if (num[v] == -1) {

scc(v);
low[u] = min(low[u], low[v]);

} else if (incomp[v]) {
low[u] = min(low[u], num[v]);

}
}

if (num[u] == low[u]) {
printf("comp: ");
while (true) {

int cur = comp.top();
comp.pop();
incomp[cur] = false;
printf("%d, ", cur);
if (cur == u) {

break;
}

}

printf("\n");
}

}
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Strongly connected components

▶ Time complexity?
▶ Basically just the DFS analyze function (which was
O(n+m)), with one additional loop to construct the
component

▶ But each vertex is only in one component...
▶ Time complexity still just O(n+m)
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Example problem: Come and Go
▶ http://uva.onlinejudge.org/external/118/11838.html
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Topological sort
▶ We have n tasks
▶ Each task i has a list of tasks that must be finished
before we can start task i

▶ Find an order in which we can process the tasks
▶ Can be represented as a directed graph

– Each task is a vertex in the graph
– If task j should be finished before task i, then we add a

directed edge from vertex i to vertex j

▶ Notice that this can’t be solved if the graph contains a
cycle

▶ A modified depth-first search can be used to find an
ordering in O(n+m) time, or determine that one does
not exist
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Topological sort
vector<int> adj[1000];
vector<bool> visited(1000, false);
vector<int> order;

void topsort(int u) {
if (visited[u]) {

return;
}

visited[u] = true;
for (int i = 0; i < adj[u].size(); i++) {

int v = adj[u][i];
topsort(v);

}

order.push_back(u);
}

for (int u = 0; u < n; u++) {
topsort(u);

}
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Example problem: Ordering Tasks
▶ http://uva.onlinejudge.org/external/103/10305.html
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Breadth-first search

▶ There’s another search algorithm called Breadth-first
search

▶ Only difference is the order in which it visits the
vertices

▶ It goes in order of increasing distance from the
source vertex
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Breadth-first search
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Breadth-first search
vector<int> adj[1000];
vector<bool> visited(1000, false);

queue<int> Q;
Q.push(start);
visited[start] = true;

while (!Q.empty()) {
int u = Q.front(); Q.pop();

for (int i = 0; i < adj[u].size(); i++) {
int v = adj[u][i];
if (!visited[v]) {

Q.push(v);
visited[v] = true;

}
}

}
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Shortest path in unweighted graphs
▶ We have an unweighted graph, and want to find the
shortest path from A to B

▶ That is, we want to find a path from A to B with the
minimum number of edges

▶ Breadth-first search goes through the vertices in
increasing order of distance from the start vertex

▶ Just do a single breadth-first search from A, until we
find B

▶ Or let the search continue through the whole graph,
and then we have the shortest paths from A to all
other vertices

▶ Shortest path from A to all other vertices: O(n+m)
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Shortest path in unweighted graphs
vector<int> adj[1000];
vector<bool> dist(1000, -1);

queue<int> Q;
Q.push(A);
dist[A] = 0;

while (!Q.empty()) {
int u = Q.front(); Q.pop();

for (int i = 0; i < adj[u].size(); i++) {
int v = adj[u][i];
if (dist[v] == -1) {

Q.push(v);
dist[v] = 1 + dist[u];

}
}

}

printf("%d\n", dist[B]);
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