Graphs Unweighted Graphs

Bjarki Ágúst Guồmundsson Tómas Ken Magnússon

School of Computer Science Reykjavík University

Árangursrík forritun og lausn verkefna

Today we're going to cover

- Graph basics
- Graph representation (recap)
- Depth-first search
- Connected components
- DFS tree
- Bridges
- Strongly connected components
- Topological sort
- Breadth-first search
- Shortest paths in unweighted graphs

What is a graph?

What is a graph?

- Vertices
- Road intersections
- Computers
- Floors in a house
- Objects

What is a graph?

- Vertices
- Road intersections
- Computers
- Floors in a house
- Objects
- Edges
- Roads
- Ethernet cables
- Stairs or elevators
- Relation between objects

Types of edges

- Unweighted

Types of edges

- Unweighted or Weighted

Types of edges

- Unweighted or Weighted
- Undirected

Types of edges

- Unweighted or Weighted
- Undirected or Directed

Types of edges

- Unweighted or Weighted
- Undirected or Directed

Multigraphs

Multigraphs

- Multiple edges

Multigraphs

- Multiple edges
- Self-loops

Adjacency list

```
0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2
vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(3);
adj[3].push_back(2);
```


Adjacency list (directed)

```
0: 1
1: 2
2: 0, 1, 3
3:
vector<int> adj[4];
adj[0].push_back(1);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(3);
```


Vertex properties (undirected graph)

- Degree of a vertex
- Number of adjacent edges
- Number of adjacent vertices

Vertex properties (undirected graph)

- Degree of a vertex
- Number of adjacent edges
- Number of adjacent vertices

Vertex properties (undirected graph)

- Degree of a vertex
- Number of adjacent edges
- Number of adjacent vertices
- Handshaking lemma

$$
\sum_{v \in V} \operatorname{deg}(v)=2|V|
$$

Vertex properties (undirected graph)

- Degree of a vertex
- Number of adjacent edges
- Number of adjacent vertices
- Handshaking lemma

$$
\begin{gathered}
\sum_{\boldsymbol{v} \in \boldsymbol{V}} \operatorname{deg}(\boldsymbol{V})=2|\boldsymbol{V}| \\
2+2+3+1=2 \times 4
\end{gathered}
$$

Vertex properties (undirected graph)

$$
\begin{array}{lll}
0: & 1, & 2 \\
1: & 0, & 2 \\
2: & 0, & 1, \\
3: & 2 &
\end{array}
$$

$$
\operatorname{adj}[0] . \operatorname{size}() / / 2
$$

$$
\text { adj[1].size() // } 2
$$

$$
\text { adj[2].size() // } 3
$$

$$
\text { adj[3].size() // } 1
$$

Vertex properties (directed graph)

- Outdegree of a vertex
- Number of outgoing edges

Vertex properties (directed graph)

- Outdegree of a vertex
- Number of outgoing edges

Vertex properties (directed graph)

- Outdegree of a vertex
- Number of outgoing edges
- Indegree of a vertex
- Number of incoming edges

Vertex properties (directed graph)

- Outdegree of a vertex
- Number of outgoing edges
- Indegree of a vertex
- Number of incoming edges

Vertex properties (directed graph)

- Outdegree of a vertex
- Number of outgoing edges
- Indegree of a vertex
- Number of incoming edges

Vertex properties (directed graph)

- Outdegree of a vertex
- Number of outgoing edges
- Indegree of a vertex
- Number of incoming edges

Adjacency list (directed)

```
0: 1
1: 2
2: 0, 1, 3
3:
adj[0].size() // 1
adj[1].size() // 1
adj[2].size() // 3
adj[3].size() // 0
```


Paths

- Path / Walk / Trail:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right)
\end{gathered}
$$

Paths

- Path / Walk / Trail:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right)
\end{gathered}
$$

Paths

- Path / Walk / Trail:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right)
\end{gathered}
$$

Paths

- Path / Walk / Trail:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right)
\end{gathered}
$$

Cycles

- Cycle / Circuit / Tour:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right) \\
\operatorname{from}\left(e_{1}\right)=\operatorname{to}\left(e_{k}\right)
\end{gathered}
$$

Cycles

- Cycle / Circuit / Tour:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right) \\
\operatorname{from}\left(e_{1}\right)=\operatorname{to}\left(e_{k}\right)
\end{gathered}
$$

Cycles

- Cycle / Circuit / Tour:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right) \\
\operatorname{from}\left(e_{1}\right)=\operatorname{to}\left(e_{k}\right)
\end{gathered}
$$

Cycles

- Cycle / Circuit / Tour:

$$
e_{1} e_{2} \ldots e_{k}
$$

such that

$$
\begin{gathered}
e_{i} \in E \\
e_{i}=e_{j} \Rightarrow i=j \\
\operatorname{to}\left(e_{i}\right)=\operatorname{from}\left(e_{i+1}\right) \\
\operatorname{from}\left(e_{1}\right)=\operatorname{to}\left(e_{k}\right)
\end{gathered}
$$

Depth-first search

- Given a graph (either directed or undirected) and two vertices u and v, does there exist a path from u to v ?
- Depth-first search is an algorithm for finding such a path, if one exists
- It traverses the graph in depth-first order, starting from the initial vertex u
- We don't actually have to specify a v, since we can just let it visit all reachable vertices from u (and still same time complexity)
- But what is the time complexity?
- Each vertex is visited once, and each edge is traversed once
- $O(n+m)$

Depth-first search

Stack:
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: $0 \mid$
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: $0 \mid$
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 0 | 21
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 2 | 1
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 2 | 1
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 2 | 31
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 3 | 1
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 1 |
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 1 |
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 1 | 4
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 4 |
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 4 |
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 4 | 5
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 5 |
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 5 |
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 5 | 867
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 8 | 67
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 8 | 67
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}\right.$

Depth-first search

Stack: 8 | 967
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right.$

Depth-first search

Stack: 9 | 67
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right.$

Depth-first search

Stack: 6 |
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right.$

Depth-first search

Stack: 7 |
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right.$

Depth-first search

Stack: 7 |
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right.$

Depth-first search

Stack: 7 | 10
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right.$

Depth-first search

Stack: 10 |
$\operatorname{marked} \left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right.$

Depth-first search

Stack:
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right.$

Depth-first search

vector<int> adj[1000];
vector<bool> visited(1000, false);
void dfs(int u) \{
if (visited[u]) \{
return;
$\}$
visited[u] = true;
for (int $i=0$; $i<\operatorname{adj}[u] . \operatorname{size}() ; i++$) \{ int $v=\operatorname{adj}[u][i] ;$ dfs(v);
\}
\}

Connected components

- An undirected graph can be partitioned into connected components
- A connected component is a maximal subset of the vertices such that each pair of vertices is reachable from each other
- We've already seen this in a couple of problems, but we've been using Union-Find to keep track of the components

Connected components

2

Connected components

Connected components

- Also possible to find these components using depth-first search
- Pick some vertex we don't know anything about, and do a depth-first search out from it
- All vertices reachable from that starting vertex are in the same component
- Repeat this process until you have all the components
- Time complexity is $O(n+m)$

Connected components

```
vector<int> adj[1000];
vector<int> component(1000, -1);
void find_component(int cur_comp, int u) {
    if (component[u] != -1) {
        return;
    }
    component[u] = cur_comp;
    for (int i = 0; i < adj[u].size(); i++) {
        int v = adj[u][i];
        find_component(cur_comp, v);
    }
}
int components = 0;
for (int u = 0; u < n; u++) {
    if (component[u] == -1) {
        find_component(components, u);
        components++;
    }
}
```


Depth-first search tree

- When we do a depth-first search from a certain vertex, the path that we take forms a tree
- When we go from a vertex to another vertex that we haven't visited before, the edge that we take is called a forward edge
- When we go from a vertex to another vertex that we've already visited before, the edge that we take is called a backward edge
- To be more specific: the forward edges form a tree
- see example

Depth-first search tree

- This tree of forward edges, along with the backward edges, can be analyzed to get a lot of information about the original graph
- For example: a backward edge represents a cycle in the original graph
- If there are no backward edges, then there are no cycles in the original graph (i.e. the graph is acyclic)

Analyzing the DFS tree

- Let's take a closer look at the depth-first search tree
- First, let's number each of the vertices in the order that we visit them in the depth-first search
- For each vertex, we want to know the smallest number of a vertex that we visited when exploring the subtree rooted at the current vertex
- Why? We'll see in a bit..
- see example

Analyzing the DFS tree

```
const int n = 1000;
vector<int> adj[n];
vector<int> low(n), num(n, -1);
int curnum = 0;
void analyze(int u, int p) {
    low[u] = num[u] = curnum++;
    for (int i = 0; i < adj[u].size(); i++) {
        int v = adj[u][i];
        if (v == p) continue;
        if (num[v] == -1) {
            analyze(v, u);
            low[u] = min(low[u], low[v]);
        } else {
            low[u] = min(low[u], num[v]);
        }
        }
}
for (int u = 0; u < n; u++) {
    if (num[u] == -1) {
        analyze(u, -1);
    }
}
```


Analyzing the DFS tree

- Time complexity of this is just $O(n+m)$, since this is basically just one depth-first search
- Now, as promised, let's see some applications of this

Bridges

- We have an undirected graph
- Without loss of generality, assume it is connected (i.e. one big connected component)
- Find an edge, so that if you remove that edge the graph is no longer connected
- Naive algorithm: Try removing edges, one at a time, and finding the connected components of the resulting graph
- That's pretty inefficient, $O(m(n+m))$

Bridges

- Let's take a look at the values that we computed in the DFS tree
- We see that a forward edge (u, v) is a bridge if and only if low [v] >num [u]
- Simple to extend our analyze function to return all bridges
- Again, this is just $O(n+m)$

Bridges

```
const int n = 1000;
vector<int> adj[n];
vector<int> low(n), num(n, -1);
int curnum = 0;
vector<pair<int, int> > bridges;
void find_bridges(int u, int p) {
    low[u] = num[u] = curnum++;
    for (int i = 0; i < adj[u].size(); i++) {
            int v = adj[u][i];
            if (v == p) continue;
            if (num[v] == -1) {
                find_bridges(v, u);
                low[u] = min(low[u], low[v]);
            } else {
            low[u] = min(low[u], num[v]);
            }
            if (low[v] > num[u]) {
                    bridges.push_back(make_pair(u, v));
            }
        }
}
for (int u = 0; u< n; u++) {
    if (num[u] == -1) {
        find_bridges(u, -1);
    }
}
```


Strongly connected components

- We know how to find connected components in undirected graphs
- But what about directed graphs?
- Such components behave a bit differently in directed graphs, especially since if v is reachable from u, it doesn't mean that u is reachable from v
- The definition remains the same, though
- A strongly connected component is a maximal subset of the vertices such that each pair of vertices is reachable from each other

Strongly connected components

- The connected components algorithm won't work here
- Instead we can use the depth-first search tree of the graph to find these components
- see example

Strongly connected components

```
vector<int> adj[100];
vector<int> low(100), num(100, -1);
vector<bool> incomp(100, false);
int curnum = 0;
stack<int> comp;
void scc(int u) {
    // scc code...
}
for (int i = 0; i < n; i++) {
    if (num[i] == -1) {
        scc(i);
    }
}
```


Strongly connected components

```
void scc(int u) {
    comp.push(u);
    incomp[u] = true;
    low[u] = num[u] = curnum++;
    for (int i = 0; i < adj[u].size(); i++) {
        int v = adj[u][i];
        if (num[v] == -1) {
            scc(v);
        low[u] = min(low[u], low[v]);
        } else if (incomp[v]) {
        low[u] = min(low[u], num[v]);
        }
    }
    if (num[u] == low[u]) {
        printf("comp: ");
        while (true) {
            int cur = comp.top();
            comp.pop();
            incomp[cur] = false;
            printf("%d, ", cur);
            if (cur == u) {
                    break;
            }
        }
        printf("\n");
    }
}
```


Strongly connected components

- Time complexity?
- Basically just the DFS analyze function (which was $O(n+m)$), with one additional loop to construct the component
- But each vertex is only in one component...
- Time complexity still just $O(n+m)$

Example problem: Come and Go

- http://uva.onlinejudge.org/external/118/11838.html

Topological sort

- We have n tasks
- Each task i has a list of tasks that must be finished before we can start task i
- Find an order in which we can process the tasks
- Can be represented as a directed graph
- Each task is a vertex in the graph
- If task j should be finished before task i, then we add a directed edge from vertex i to vertex j
- Notice that this can't be solved if the graph contains a cycle
- A modified depth-first search can be used to find an ordering in $O(n+m)$ time, or determine that one does not exist

Topological sort

```
vector<int> adj[1000];
vector<bool> visited(1000, false);
vector<int> order;
void topsort(int u) {
    if (visited[u]) {
        return;
    }
    visited[u] = true;
    for (int i = 0; i < adj[u].size(); i++) {
            int v = adj[u][i];
            topsort(v);
    }
    order.push_back(u);
}
for (int u = 0; u < n; u++) {
    topsort(u);
}
```


Example problem: Ordering Tasks

- http://uva.onlinejudge.org/external/103/10305.html

Breadth-first search

- There's another search algorithm called Breadth-first search
- Only difference is the order in which it visits the vertices
- It goes in order of increasing distance from the source vertex

Breadth-first search

Queue:
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue:

marked	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0	

Breadth-first search

Queue:

marked	0	1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0	0	0	0	0	0	

Breadth-first search

Queue: 012
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 12
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 12
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 124
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 24
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 24
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 243
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 43
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 43
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 435
marked $\left\lvert\, \begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right.$

Breadth-first search

Queue: 35

marked	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	0	0	0	0	0	

Breadth-first search

Queue: 5

marked	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	0	0	0	0	0	

Breadth-first search

Queue: 5

marked	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	0	0	0	0	0	

Breadth-first search

Queue: 5678

	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	0	0	

Breadth-first search

Queue: 678

	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	0	0	

Breadth-first search

Queue: 78

	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	0	0	

Breadth-first search

Queue: 78

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	0	0	

Breadth-first search

Queue: 7810

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	0	1	

Breadth-first search

Queue: 810

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	0	1	

Breadth-first search

Queue: 810

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	0	1	

Breadth-first search

Queue: 8109

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	1	1	1

Breadth-first search

Queue: 109

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	1	1	1

Breadth-first search

Queue: 9

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	1	1	

Breadth-first search

Queue:

	0	1	2	3	4	5	6	7	8	9	10
marked	1	1	1	1	1	1	1	1	1	1	1

Breadth-first search

```
vector<int> adj[1000];
vector<bool> visited(1000, false);
queue<int> Q;
Q.push(start);
visited[start] = true;
while (!Q.empty()) {
    int u = Q.front(); Q.pop();
    for (int i = 0; i < adj[u].size(); i++) {
        int v = adj[u][i];
        if (!visited[v]) {
            Q.push(v);
                visited[v] = true;
        }
    }
}
```


Shortest path in unweighted graphs

- We have an unweighted graph, and want to find the shortest path from A to B
- That is, we want to find a path from A to B with the minimum number of edges
- Breadth-first search goes through the vertices in increasing order of distance from the start vertex
- Just do a single breadth-first search from A, until we find B
- Or let the search continue through the whole graph, and then we have the shortest paths from A to all other vertices
- Shortest path from A to all other vertices: $O(n+m)$

Shortest path in unweighted graphs

```
vector<int> adj[1000];
vector<bool> dist(1000, -1);
queue<int> Q;
Q.push(A);
dist[A] = 0;
while (!Q.empty()) {
    int u = Q.front(); Q.pop();
    for (int i = 0; i < adj[u].size(); i++) {
            int v = adj[u][i];
            if (dist[v] == -1) {
                Q.push(v);
                dist[v] = 1 + dist[u];
            }
    }
}
printf("%d\n", dist[B]);
```

