
Graphs

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

http://ru.is/td
http://ru.is


Today we’re going to cover

▶ Minimum spanning tree
▶ Shortest paths
▶ Some known graph problems
▶ Special graphs

– Trees
– Directed acyclic graphs
– Bipartite graphs

2



Weighted graphs

▶ Now the edges in our graphs may have weights,
which could represent

– the distance of the road represented by the edge
– the cost of going over the edge
– some capacity of the edge

▶ We can use a modified adjacency list to represent
weighted graphs

3



Weighted graphs

struct edge {
int u, v;
int weight;

edge(int _u, int _v, int _w) {
u = _u;
v = _v;
weight = _w;

}
};

0

1 2

3

3 -4

0

2.9

4



Weighted graphs

vector<edge> adj[4];

adj[0].push_back(edge(0, 1, 3));
adj[0].push_back(edge(0, 2, -4));

adj[1].push_back(edge(1, 0, 3));
adj[1].push_back(edge(1, 2, 0));

adj[2].push_back(edge(2, 0, -4));
adj[2].push_back(edge(2, 1, 0));
adj[2].push_back(edge(2, 3, 2.9));

adj[3].push_back(edge(3, 2, 2.9));

0

1 2

3

3 -4

0

2.9

5



Minimum spanning tree

▶ We have an undirected weighted graph
▶ The vertices along with a subset of the edges in the
graph is called a spanning tree if

– it forms a tree (i.e. does not contain a cycle) and
– the tree spans all vertices (all vertices can reach all other

vertices)

▶ The weight of a spanning tree is the sum of the
weights of the edges in the subset

▶ We want to find a minimum spannig tree

6



Minimum spanning tree

▶ Several greedy algorithms work

▶ Go through the edges in the graph in increasing order
of weight

▶ Greedily pick an edge if it doesn’t form a cycle
(Union-Find can be used to keep track of when we
would get a cycle)

▶ When we’ve gone through all edges, we have a
minimum spanning tree

▶ This is Kruskal’s algorithm
▶ Time complexity is O(E logE)

7



Minimum spanning tree
bool edge_cmp(const edge &a, const edge &b) {

return a.weight < b.weight;
}

vector<edge> mst(int n, vector<edge> edges) {
union_find uf(n);
sort(edges.begin(), edges.end(), edge_cmp);

vector<edge> res;
for (int i = 0; i < edges.size(); i++) {

int u = edges[i].u,
v = edges[i].v;

if (uf.find(u) != uf.find(v)) {
uf.unite(u, v);
res.push_back(edges[i]);

}
}

return res;
}

8



Example problem: Dark roads
▶ http://uva.onlinejudge.org/external/116/11631.html

9



Shortest paths

▶ We have a weighted graph (undirected or directed)
▶ Given two vertices u, v, what is the shortest path from
u to v?

▶ If all weights are the same, this can be solved with
breadth-first search

▶ Of course, this is usually not the case...

10



Shortest paths

▶ There are many known algorithms to find shortest
paths

▶ Like breadth-first search, these algorithms usually
find the shortest paths from a given start vertex to all
other vertices

▶ Let’s take a quick look at Dijkstra’s algorithm, the
Bellman-Ford algorithm and the Floyd-Warshall
algorithm

11



Dijkstra’s algorithm
vector<edge> adj[100];
vector<int> dist(100, INF);

void dijkstra(int start) {
dist[start] = 0;
priority_queue<pair<int, int>,

vector<pair<int, int> >,
greater<pair<int, int> > > pq;

pq.push(make_pair(dist[start], start));

while (!pq.empty()) {
int u = pq.top().second;
pq.pop();

for (int i = 0; i < adj[u].size(); i++) {
int v = adj[u][i].v;
int w = adj[u][i].weight;

if (w + dist[u] < dist[v]) {
dist[v] = w + dist[u];
pq.push(make_pair(dist[v], v));

}
}

}
} 12



Dijkstra’s algorithm

▶ Time complexity is O(V logE)

▶ Note that this only works for non-negative weights

13



Bellman-Ford algorithm
void bellman_ford(int n, int start) {

dist[start] = 0;

for (int i = 0; i < n - 1; i++) {
for (int u = 0; u < n; u++) {

for (int j = 0; j < adj[u].size(); j++) {
int v = adj[u][j].v;
int w = adj[u][j].weight;
dist[v] = min(dist[v], w + dist[u]);

}
}

}
}

14



Bellman-Ford algorithm

▶ Time complexity is O(V× E)

▶ Can be used to detect negative-weight cycles

15



Floyd-Warshall algorithm

▶ What about using dynamic programming to compute
shortest paths?

▶ Let sp(k, i, j) be the shortest path from i to j if we’re
only allowed to travel through the vertices 0, …, k

▶ Base case: sp(k, i, j) = 0 if i = j
▶ Base case: sp(−1, i, j) = weight[a][b] if (i, j) ∈ E
▶ Base case: sp(−1, i, j) = ∞

▶ sp(k, i, j) = min
{

sp(k− 1, i, k) + sp(k− 1, k, j)
sp(k− 1, i, j)

16



Floyd-Warshall algorithm
int dist[1000][1000];
int weight[1000][1000];

void floyd_warshall(int n) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
dist[i][j] = i == j ? 0 : weight[i][j];

}
}

for (int k = 0; k < n; k++) {
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);

}
}

}
}

17



Floyd-Warshall algorithm

▶ Computes all-pairs shortest paths
▶ Time complexity is clearly O(n3)

▶ Very simple to code

18



Known graph problems

▶ The problems we’re dealing with very often ask us to
solve some well known graph problem

▶ But usually it’s well hidden in the problem statement

▶ Let’s take a look at a few examples

19



Minimum vertex cover
▶ We have an unweighted undirected graph
▶ A vertex cover is a subset of the vertices S, such that
for each edge (u, v) in the graph, either u or v (or
both) are in S

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a vertex cover of minimum size

▶ NP-hard problem in general graphs

20



Minimum vertex cover
▶ We have an unweighted undirected graph
▶ A vertex cover is a subset of the vertices S, such that
for each edge (u, v) in the graph, either u or v (or
both) are in S

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a vertex cover of minimum size

▶ NP-hard problem in general graphs

20



Minimum vertex cover
▶ We have an unweighted undirected graph
▶ A vertex cover is a subset of the vertices S, such that
for each edge (u, v) in the graph, either u or v (or
both) are in S

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a vertex cover of minimum size

▶ NP-hard problem in general graphs

20



Minimum vertex cover
▶ We have an unweighted undirected graph
▶ A vertex cover is a subset of the vertices S, such that
for each edge (u, v) in the graph, either u or v (or
both) are in S

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a vertex cover of minimum size

▶ NP-hard problem in general graphs

20



Minimum vertex cover
▶ We have an unweighted undirected graph
▶ A vertex cover is a subset of the vertices S, such that
for each edge (u, v) in the graph, either u or v (or
both) are in S

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a vertex cover of minimum size

▶ NP-hard problem in general graphs
20



Maximum independent set
▶ We have an unweighted undirected graph
▶ An independent set is a subset of the vertices S, such
that no two vertices u, v in S are adjacent in the graph

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find an independent set of maximum size

▶ NP-hard problem in general graphs

21



Maximum independent set
▶ We have an unweighted undirected graph
▶ An independent set is a subset of the vertices S, such
that no two vertices u, v in S are adjacent in the graph

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find an independent set of maximum size

▶ NP-hard problem in general graphs

21



Maximum independent set
▶ We have an unweighted undirected graph
▶ An independent set is a subset of the vertices S, such
that no two vertices u, v in S are adjacent in the graph

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find an independent set of maximum size

▶ NP-hard problem in general graphs

21



Maximum independent set
▶ We have an unweighted undirected graph
▶ An independent set is a subset of the vertices S, such
that no two vertices u, v in S are adjacent in the graph

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find an independent set of maximum size

▶ NP-hard problem in general graphs

21



Maximum independent set
▶ We have an unweighted undirected graph
▶ An independent set is a subset of the vertices S, such
that no two vertices u, v in S are adjacent in the graph

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find an independent set of maximum size

▶ NP-hard problem in general graphs

21



Relation between MVC and MIS
▶ The previous two problems are very related
▶ A subset of the vertices is a vertex cover if and only if
the complement of the set is an independent set

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ The size of a minimum vertex cover plus the size of a
maximum independent set is equal to the number of
vertices

22



Relation between MVC and MIS
▶ The previous two problems are very related
▶ A subset of the vertices is a vertex cover if and only if
the complement of the set is an independent set

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ The size of a minimum vertex cover plus the size of a
maximum independent set is equal to the number of
vertices

22



Relation between MVC and MIS
▶ The previous two problems are very related
▶ A subset of the vertices is a vertex cover if and only if
the complement of the set is an independent set

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ The size of a minimum vertex cover plus the size of a
maximum independent set is equal to the number of
vertices

22



Relation between MVC and MIS
▶ The previous two problems are very related
▶ A subset of the vertices is a vertex cover if and only if
the complement of the set is an independent set

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ The size of a minimum vertex cover plus the size of a
maximum independent set is equal to the number of
vertices

22



Maximum matching
▶ We have an unweighted undirected graph
▶ A matching is a subset of the edges such that each
vertex is adjacent to at most one edge in the subset

0

1

2

3

4

5 6

▶ We want to find a matching of maximum size

▶ There exists an O(V4) algorithm for general graphs,
but is pretty complex

23



Maximum matching
▶ We have an unweighted undirected graph
▶ A matching is a subset of the edges such that each
vertex is adjacent to at most one edge in the subset

0

1

2

3

4

5 6

▶ We want to find a matching of maximum size

▶ There exists an O(V4) algorithm for general graphs,
but is pretty complex

23



Maximum matching
▶ We have an unweighted undirected graph
▶ A matching is a subset of the edges such that each
vertex is adjacent to at most one edge in the subset

0

1

2

3

4

5 6

▶ We want to find a matching of maximum size

▶ There exists an O(V4) algorithm for general graphs,
but is pretty complex

23



Maximum matching
▶ We have an unweighted undirected graph
▶ A matching is a subset of the edges such that each
vertex is adjacent to at most one edge in the subset

0

1

2

3

4

5 6

▶ We want to find a matching of maximum size

▶ There exists an O(V4) algorithm for general graphs,
but is pretty complex

23



Maximum matching
▶ We have an unweighted undirected graph
▶ A matching is a subset of the edges such that each
vertex is adjacent to at most one edge in the subset

0

1

2

3

4

5 6

▶ We want to find a matching of maximum size

▶ There exists an O(V4) algorithm for general graphs,
but is pretty complex

23



Graph coloring
▶ We have an unweighted undirected graph
▶ A coloring of the graph is an assignment of colors to
the vertices such that adjacent vertices have different
colors

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a coloring that uses the minimum
number of distinct colors

▶ NP-hard in general graphs

24



Graph coloring
▶ We have an unweighted undirected graph
▶ A coloring of the graph is an assignment of colors to
the vertices such that adjacent vertices have different
colors

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a coloring that uses the minimum
number of distinct colors

▶ NP-hard in general graphs

24



Graph coloring
▶ We have an unweighted undirected graph
▶ A coloring of the graph is an assignment of colors to
the vertices such that adjacent vertices have different
colors

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a coloring that uses the minimum
number of distinct colors

▶ NP-hard in general graphs

24



Graph coloring
▶ We have an unweighted undirected graph
▶ A coloring of the graph is an assignment of colors to
the vertices such that adjacent vertices have different
colors

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a coloring that uses the minimum
number of distinct colors

▶ NP-hard in general graphs

24



Graph coloring
▶ We have an unweighted undirected graph
▶ A coloring of the graph is an assignment of colors to
the vertices such that adjacent vertices have different
colors

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

▶ We want to find a coloring that uses the minimum
number of distinct colors

▶ NP-hard in general graphs
24



Special graphs

▶ All of these problems are hard (in some sense) in
general graphs

▶ But what if we’re working with special kinds of
graphs?

▶ Let’s look at a few examples

25



Bipartite graphs
▶ A graph is bipartite if the vertices can be partitioned
into two sets such that for each edge (u, v) u and v
are in different sets

0

1

2

3

4

5

6

▶ How do we check if a graph is bipartite?

26



Bipartite graphs
▶ A graph is bipartite if the vertices can be partitioned
into two sets such that for each edge (u, v) u and v
are in different sets

0

1

2

3

4

5

6

▶ How do we check if a graph is bipartite?

26



Bipartite graphs
▶ A graph is bipartite if the vertices can be partitioned
into two sets such that for each edge (u, v) u and v
are in different sets

0

1

2

3

4

5

6

▶ How do we check if a graph is bipartite?

26



Bipartite graphs
▶ A graph is bipartite if the vertices can be partitioned
into two sets such that for each edge (u, v) u and v
are in different sets

0

1

2 345

6

▶ How do we check if a graph is bipartite?

26



Bipartite graphs
▶ A graph is bipartite if the vertices can be partitioned
into two sets such that for each edge (u, v) u and v
are in different sets

0

1

2 345

6

▶ How do we check if a graph is bipartite?

26



Bipartite graphs

▶ We want to check if we can split the vertices into
these two groups

▶ Take any vertex, and assume that it’s in the first group
▶ Then all of his neighbors must be in the second group
▶ And then all of their neighbors must be in the first
group

▶ And so on...

▶ We can do this with a simple depth-first search
▶ If we ever find a contradiction (i.e. a vertex must both
be in the first and second set), then the graph is not
bipartite

27



Bipartite graphs
vector<int> adj[1000];
vector<int> side(1000, -1);
bool is_bipartite = true;

void check_bipartite(int u) {
for (int i = 0; i < adj[u].size(); i++) {

int v = adj[u][i];
if (side[v] == -1) {

side[v] = 1 - side[u];
check_bipartite(v);

} else if (side[u] == side[v]) {
is_bipartite = false;

}
}

}

for (int u = 0; u < n; u++) {
if (side[u] == -1) {

side[u] = 0;
check_bipartite(u);

}
}

28



Coloring bipartite graphs
▶ What if we want to find the minimum graph coloring of
a bipartite graph?

0

1

2 345

6

0

1

2 345

6

▶ Simple, one side can be colored with one color, and
the second side can be colored with a second color

29



Coloring bipartite graphs
▶ What if we want to find the minimum graph coloring of
a bipartite graph?

0

1

2 345

6

0

1

2 345

6

▶ Simple, one side can be colored with one color, and
the second side can be colored with a second color

29



Bipartite matching

▶ Finding a maximum matching in bipartite graphs is
very common

▶ see example

▶ Tomorrow we’ll see an efficient algorithm for finding
the maximum matching in a bipartite graph

▶ Remember that an efficient algorithm for finding
maximum matchings in general graphs is not known

30



König’s theorem

▶ König’s theorem states that the size of a minimum
vertex cover in a bipartite graph is equal to the size of
the maximum matching in that graph

▶ So to find the minimum vertex cover in a bipartite
graph, we just find the maximum matching with our
efficient algorithm, and we have our answer

▶ And since the size of the maximum independent set
is just the number of vertices minus the size of the
minimum vertex cover, we can also compute the
maximum independent set for a bipartite graph
efficiently

31



Trees

▶ An undirected graph is a tree if it has no cycles

▶ Easy to check if a graph is a tree by checking if there
are any backward edges in the depth-first search tree
(see previous lecture)

▶ A connected tree with n vertices has exactly n− 1
edges

▶ Between each pair of vertices u, v in the tree, there
exists exactly one simple path, which can be found
with depth-first search (or breadth-first search)

32



Trees

▶ What if we look at these problems for trees?

▶ How do we find the minimum number of colors
needed to color a tree?

▶ Well, trees are actually bipartite graphs...
▶ Why? Pick some vertex and make it the root of the
tree. Then vertices at even heights in the tree can be
put on one side, and vertices at odd heights can be
put on the other side

▶ So all the efficient algorithms for bipartite graphs also
work for trees

33



Trees

▶ What if we look at these problems for trees?

▶ How do we find the minimum number of colors
needed to color a tree?

▶ Well, trees are actually bipartite graphs...
▶ Why? Pick some vertex and make it the root of the
tree. Then vertices at even heights in the tree can be
put on one side, and vertices at odd heights can be
put on the other side

▶ So all the efficient algorithms for bipartite graphs also
work for trees

33



Trees

▶ Trees are also well suited for dynamic programming,
so many problems become simpler here because of
that

34



Directed acyclic graphs

▶ A directed graph is a directed acyclic graph if it
doesn’t contain any cycles

▶ Easy to check if a graph is a DAG by checking if there
are any backward edges in the depth-first search tree
(see previous lecture)

▶ Many problems are simple on DAGs, since it’s easy
to do dynamic programming over DAGs

– counting number of simple paths from u to v
– longest simple path from u to v

35


