
Strings

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

http://ru.is/td
http://ru.is


Today we’re going to cover

▶ String matching
– Naive algorithm
– Knuth–Morris–Pratt (KMP) algorithm

▶ Tries
▶ Suffix tries
▶ Suffix trees
▶ Suffix arrays

2



String problems

▶ Strings frequently appear in our kind of problems
– Reading input
– Writing output
– Parsing
– Identifiers/names
– Data

▶ But sometimes strings play the key role
– We want to find properties of some given strings
– Is the string a palindrome?

▶ Here we’re going to talk about things related to the
latter type of problems

▶ These problems can be hard, because the length of
the strings are often huge

3



String matching

▶ Given a string S of length n,
▶ and a string T of length m,
▶ find all occurrences of T in S

▶ Note:
– Occurrences may overlap
– Assume strings contain characters from a constant-sized
alphabet

4



String matching

Example:
▶ S = cabcababacaba
▶ T = aba

▶ Three occurrences:

– cabcababacaba
– cabcababacaba
– cabcababacaba

5



String matching

Example:
▶ S = cabcababacaba
▶ T = aba
▶ Three occurrences:

– cabcababacaba
– cabcababacaba
– cabcababacaba

5



String matching

Example:
▶ S = cabcababacaba
▶ T = aba
▶ Three occurrences:

– cabcababacaba

– cabcababacaba
– cabcababacaba

5



String matching

Example:
▶ S = cabcababacaba
▶ T = aba
▶ Three occurrences:

– cabcababacaba
– cabcababacaba

– cabcababacaba

5



String matching

Example:
▶ S = cabcababacaba
▶ T = aba
▶ Three occurrences:

– cabcababacaba
– cabcababacaba
– cabcababacaba

5



Naive string matching algorithm

▶ For each substring of length m in S,
▶ check if that substring is equal to T.

6



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

7



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

8



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

9



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

10



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

11



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

12



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

13



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

14



Naive string matching algorithm

▶ S: bacbababaabcbab
▶ T: ababaca

15



Naive string matching algorithm
int string_match(const string &s, const string &t) {

int n = s.size(),
m = t.size();

for (int i = 0; i + m - 1 < n; i++) {
bool found = true;
for (int j = 0; j < m; j++) {

if (s[i + j] != t[j]) {
found = false;
break;

}
}
if (found) {

return i;
}

}

return -1;
}

16



Naive string matching algorithm

▶ Double for-loop
– outer loop is O(n) iterations
– inner loop is O(m) iterations worst case

▶ Time complexity is O(nm) worst case

▶ Can we do better?

17



Naive string matching algorithm

▶ Double for-loop
– outer loop is O(n) iterations
– inner loop is O(m) iterations worst case

▶ Time complexity is O(nm) worst case
▶ Can we do better?

17



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

18



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

19



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

20



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

21



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

22



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

23



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

▶ The number of shifts depend on which characters are
currently matched

24



Knuth–Morris–Pratt algorithm

▶ The KMP algorithm avoids useless comparisons:
– S: bacbababaabcbab
– T: ababaca

▶ The number of shifts depend on which characters are
currently matched

24



Knuth–Morris–Pratt algorithm

▶ How are the number of shifts determined?
▶ Let π[q] = max{k : k < q and T[1 . . . k] is a suffix of T[1 . . .q]}

▶ Example:
i 1 2 3 4 5 6 7

T[i] a b a b a c a
π[i] 0 0 1 2 3 0 1

▶ If, at position i, q characters match (i.e.
T[1 . . .q] = S[i . . . i+ q− 1]), then

– if q = 0, shift pattern 1 position right
– otherwise, shift pattern q− π[q] positions right

25



Knuth–Morris–Pratt algorithm

▶ How are the number of shifts determined?
▶ Let π[q] = max{k : k < q and T[1 . . . k] is a suffix of T[1 . . .q]}

▶ Example:
i 1 2 3 4 5 6 7

T[i] a b a b a c a
π[i] 0 0 1 2 3 0 1

▶ If, at position i, q characters match (i.e.
T[1 . . .q] = S[i . . . i+ q− 1]), then

– if q = 0, shift pattern 1 position right
– otherwise, shift pattern q− π[q] positions right

25



Knuth–Morris–Pratt algorithm

▶ How are the number of shifts determined?
▶ Let π[q] = max{k : k < q and T[1 . . . k] is a suffix of T[1 . . .q]}

▶ Example:
i 1 2 3 4 5 6 7

T[i] a b a b a c a
π[i] 0 0 1 2 3 0 1

▶ If, at position i, q characters match (i.e.
T[1 . . .q] = S[i . . . i+ q− 1]), then

– if q = 0, shift pattern 1 position right
– otherwise, shift pattern q− π[q] positions right

25



Knuth–Morris–Pratt algorithm

▶ Example:
– S: bacbababaabcbab
– T: ababaca

– 5 characters match, so q = 5
– π[q] = π[5] = 3
– Then shift q− π[q] = 5− 3 = 2 positions
– S: bacbababaabcbab
– T: ababaca

26



Knuth–Morris–Pratt algorithm

▶ Example:
– S: bacbababaabcbab
– T: ababaca
– 5 characters match, so q = 5

– π[q] = π[5] = 3
– Then shift q− π[q] = 5− 3 = 2 positions
– S: bacbababaabcbab
– T: ababaca

26



Knuth–Morris–Pratt algorithm

▶ Example:
– S: bacbababaabcbab
– T: ababaca
– 5 characters match, so q = 5
– π[q] = π[5] = 3

– Then shift q− π[q] = 5− 3 = 2 positions
– S: bacbababaabcbab
– T: ababaca

26



Knuth–Morris–Pratt algorithm

▶ Example:
– S: bacbababaabcbab
– T: ababaca
– 5 characters match, so q = 5
– π[q] = π[5] = 3
– Then shift q− π[q] = 5− 3 = 2 positions

– S: bacbababaabcbab
– T: ababaca

26



Knuth–Morris–Pratt algorithm

▶ Example:
– S: bacbababaabcbab
– T: ababaca
– 5 characters match, so q = 5
– π[q] = π[5] = 3
– Then shift q− π[q] = 5− 3 = 2 positions
– S: bacbababaabcbab
– T: ababaca

26



Knuth–Morris–Pratt algorithm

▶ Given π, matching only takes O(n) time
▶ π can be computed in O(m) time
▶ Total time complexity of KMP therefore O(n+m)
worst case

27



Knuth–Morris–Pratt algorithm
int* compute_pi(const string &t) {

int m = t.size();
int *pi = new int[m + 1];
if (0 <= m) pi[0] = 0;
if (1 <= m) pi[1] = 0;
for (int i = 2; i <= m; i++) {

for (int j = pi[i - 1]; ; j = pi[j]) {
if (t[j] == t[i - 1]) {

pi[i] = j + 1;
break;

}
if (j == 0) {

pi[i] = 0;
break;

}
}

}

return pi;
}

28



Knuth–Morris–Pratt algorithm
int string_match(const string &s, const string &t) {

int n = s.size(),
m = t.size();

int *pi = compute_pi(t);

for (int i = 0, j = 0; i < n; ) {
if (s[i] == t[j]) {

i++; j++;
if (j == m) {

return i - m;
}

}
else if (j > 0) j = pi[j];
else i++;

}

delete[] pi;
return -1;

}

29



Sets of strings

▶ We often have sets (or maps) of strings
▶ Insertions and lookups usually guarantee O(logn)
comparisons

▶ But string comparisions are actually pretty
expensive...

▶ There are other data structures, like tries, which do
this in a more clever way

30



Tries
B

A

U

E

R

M

F

E

L

D

H

A

H

N

O

F

U

H

N

N

D

K

A

T

Z

E

31



Tries
B

A

U

E

R

M

F

E

L

D

H

A

H

N

U

S

O

F

U

H

N

N

D

K

A

T

Z

E

32



Tries
B

A

U

E

R

M

F

E

L

D

H

A

H

N

U

S

O

F

U

H

N

N

D

K

A

T

Z

E

33



Tries
struct node {

node* children[26];
bool is_end;

node() {
memset(children, 0, sizeof(children));
is_end = false;

}
};

34



Tries
void insert(node* nd, char *s) {

if (*s) {
if (!nd->children[*s - 'a'])

nd->children[*s - 'a'] = new node();

insert(nd->children[*s - 'a'], s + 1);
} else {

nd->is_end = true;
}

}

35



Tries
bool contains(node* nd, char *s) {

if (*s) {
if (!nd->children[*s - 'a'])

return false;

return contains(nd->children[*s - 'a'], s + 1);
} else {

return nd->is_end;
}

}

36



Tries
node *trie = new node();

insert(trie, "banani");

if (contains(trie, "banani")) {
// ...

}

37



Tries

▶ Time complexity?

▶ Let k be the length of the string we’re
inserting/looking for

▶ Lookup and insertion are both O(k)

▶ Also very space efficient...

38



Suffix tries

▶ Say we’re dealing with some string S of length n

▶ Let’s insert all suffixes of S into a trie

▶ S = banani
– insert(trie, "banani");
– insert(trie, "anani");
– insert(trie, "nani");
– insert(trie, "ani");
– insert(trie, "ni");
– insert(trie, "i");

39



Suffix tries

B

A

N

A

N

I

I N

I A

N

I

A

N

I A

N

I

40



Suffix tries

▶ There are a lot of cool things we can do with suffix
tries

▶ Example: String matching
▶ If a string T is a substring in S, then (obviously) it has
to start at some suffix of S

▶ So we can simply look for T in the suffix trie of S,
ignoring whether the last node is an end node or not

▶ This is just O(m)...

41



Suffix tries

B

A

N

A

N

I

I N

I A

N

I

A

N

I A

N

I

42



Suffix tries

▶ String matching is fast if we have the suffix trie for S

▶ But what is the time complexity of suffix trie
construction?

▶ There are n suffixes, and it takes O(n) to insert each
of them

▶ So O(n2), which is pretty slow

▶ Can we do better?
▶ There can be up to n2 nodes in the graph, so this is
actually optimal...

43



Suffix trees

▶ There exists a compressed version of a suffix trie,
called a suffix tree

▶ It can be constructed in O(n), and has all the features
that suffix tries have

▶ But the O(n) construction algorithm is pretty complex,
a big disadvantage for us

44



Suffix arrays

▶ A variation of the previous structures
▶ Can do everything the other structures can do, with a
small overhead

▶ Can be constructed pretty quickly with relatively
simple code

45



Suffix arrays
▶ Take all the suffixes of S

banani
anani
nani
ani
ni
i

▶ and sort them
anani
ani
banani
i
nani
ni

46



Suffix arrays

▶ We can use this array to do everything that suffix tries
can do

▶ Like string matching

47



Suffix arrays

▶ Let’s look for nan

▶ The first letter in the string has to be n, so we can
binary search for the range of strings starting with n

anani
ani
banani
i
nani
ni

48



Suffix arrays

▶ Let’s look for nan
▶ The first letter in the string has to be n, so we can
binary search for the range of strings starting with n

anani
ani
banani
i
nani
ni

48



Suffix arrays

▶ Let’s look for nan
▶ The first letter in the string has to be n, so we can
binary search for the range of strings starting with n

nani
ni

49



Suffix arrays

▶ Let’s look for nan
▶ The second letter in the string has to be a, so we can
binary search for the range of strings that have a as
the second letter

nani
ni

50



Suffix arrays

▶ Let’s look for nan
▶ The second letter in the string has to be a, so we can
binary search for the range of strings that have a as
the second letter

nani

51



Suffix arrays

▶ Let’s look for nan
▶ The third letter in the string has to be n, so we can
binary search for the range of strings that have n as
the third letter

nani

52



Suffix arrays

▶ Let’s look for nan
▶ The third letter in the string has to be n, so we can
binary search for the range of strings that have n as
the third letter

nani

▶ If there is at least one string left, we have a match

53



Suffix arrays

▶ Let’s look for nan
▶ The third letter in the string has to be n, so we can
binary search for the range of strings that have n as
the third letter

nani

▶ If there is at least one string left, we have a match

53



Suffix arrays

▶ Time complexity?
▶ For each letter in T, we do two binary searches on the
n suffixes to find the new range

▶ Time complexity is O(m× logn)

▶ A bit slower than doing it with a suffix trie, but still not
bad

54



Suffix arrays

▶ But how do we construct a suffix array for a string?

▶ A simple sort(suffixes) is O(n2 log(n)), because
comparing two suffixes is O(n)

▶ And we still have the same problem as with suffix
tries, there are almost n2 characters if we store all
suffixes

55



Suffix arrays
▶ The second problem is easy to fix
▶ Just store the indices of the suffixes

anani
ani
banani
i
nani
ni

▶ becomes

1: anani
3: ani
0: banani
5: i
2: nani
4: ni

56



Suffix arrays
▶ What about the construction?
▶ In short, we

– sort all suffixes by only looking at the first letter
– sort all suffixes by only looking at the first 2 letters
– sort all suffixes by only looking at the first 4 letters
– sort all suffixes by only looking at the first 8 letters
– …
– sort all suffixes by only looking at the first 2i letters
– …

▶ If we use an O(n logn) sorting algorithm, this is
O(n log2 n)

▶ We can also use an O(n) sorting algorithm, since all
sorted values are between 0 and n, bringing it down
to O(n logn)

57



Suffix arrays
struct suffix_array {

struct entry {
pair<int, int> nr;
int p;

bool operator <(const entry &other) {
return nr < other.nr;

}
};

string s;
int n;
vector<vector<int> > P;
vector<entry> L;
vi idx;

// constructor
};

58



Suffix arrays
suffix_array(string _s) : s(_s), n(s.size()) {

L = vector<entry>(n);
P.push_back(vi(n));
idx = vi(n);

for (int i = 0; i < n; i++) {
P[0][i] = s[i];

}

for (int stp = 1, cnt = 1; (cnt >> 1) < n; stp++, cnt <<= 1) {
P.push_back(vi(n));
for (int i = 0; i < n; i++) {

L[i].p = i;
L[i].nr = make_pair(P[stp - 1][i], i + cnt < n ? P[stp - 1][i + cnt] : -1);

}

sort(L.begin(), L.end());
for (int i = 0; i < n; i++) {

if (i > 0 && L[i].nr == L[i - 1].nr) {
P[stp][L[i].p] = P[stp][L[i - 1].p];

} else {
P[stp][L[i].p] = i;

}
}

}

for (int i = 0; i < n; i++) {
idx[P[P.size() - 1][i]] = i;

}
}

59



Suffix arrays
▶ There is also one other useful operation on suffix
arrays

▶ Finding the longest common prefix (lcp) of two
suffixes of S

1: anani
3: ani
0: banani
5: i
2: nani
4: ni

▶ lcp(1,3) = 2
▶ lcp(2,1) = 0

▶ This function can be implemented in O(logn) by using
intermediate results from the suffix array construction

60



Suffix arrays
int lcp(int x, int y) {

int res = 0;
if (x == y) return n - x;
for (int k = P.size() - 1; k >= 0 && x < n && y < n; k--) {

if (P[k][x] == P[k][y]) {
x += 1 << k;
y += 1 << k;
res += 1 << k;

}
}
return res;

}

61



Longest common substring

▶ Given two strings S and T, find their longest common
substring

▶ S = banani
▶ T = kanina

▶ Their longest common substring is ani

▶ see example

62


