Strings

Bjarki Ágúst Guồmundsson Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

Today we're going to cover

- String matching
- Naive algorithm
- Knuth-Morris-Pratt (KMP) algorithm
- Tries
- Suffix tries
- Suffix trees
- Suffix arrays

String problems

- Strings frequently appear in our kind of problems
- Reading input
- Writing output
- Parsing
- Identifiers/names
- Data
- But sometimes strings play the key role
- We want to find properties of some given strings
- Is the string a palindrome?
- Here we're going to talk about things related to the latter type of problems
- These problems can be hard, because the length of the strings are often huge

String matching

- Given a string S of length n,
- and a string T of length m,
- find all occurrences of T in S
- Note:
- Occurrences may overlap
- Assume strings contain characters from a constant-sized alphabet

String matching

Example:

- S = cabcababacaba
- $T=$ aba

String matching

Example:

- S = cabcababacaba
- $T=$ aba
- Three occurrences:

String matching

Example:

- S = cabcababacaba
- $T=$ aba
- Three occurrences:
- cabcababacaba

String matching

Example:

- S = cabcababacaba
- $T=$ aba
- Three occurrences:
- cabcababacaba
- cabcababacaba

String matching

Example:

- S = cabcababacaba
- $T=$ aba
- Three occurrences:
- cabcababacaba
- cabcababacaba
- cabcababacaba

Naive string matching algorithm

- For each substring of length m in S,
$>$ check if that substring is equal to T.

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

- S: bacbababaabcbab
- T: ababaca

Naive string matching algorithm

```
int string_match(const string &s, const string &t) {
int n = s.size(),
    m = t.size();
```

for (int $i=0 ; i+m-1<n ; i++$) \{
bool found = true;
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{m}$; $\mathrm{j}++$) \{
if (s[i + j] != t[j]) \{
found = false;
break;
\}
\}
if (found) \{
return i;
\}
\}
return -1;
\}

Naive string matching algorithm

- Double for-loop
- outer loop is $O(n)$ iterations
- inner loop is $O(m)$ iterations worst case
- Time complexity is $O(n m)$ worst case

Naive string matching algorithm

- Double for-loop
- outer loop is $O(n)$ iterations
- inner loop is $O(m)$ iterations worst case
- Time complexity is $O(n m)$ worst case
- Can we do better?

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- The KMP algorithm avoids useless comparisons:
- S: bacbababaabcbab
- T: ababaca
- The number of shifts depend on which characters are currently matched

Knuth-Morris-Pratt algorithm

- How are the number of shifts determined?
- Let $\pi[q]=\max \{k: k<q$ and $T[1 \ldots k]$ is a suffix of $T[1 \ldots q]\}$

Knuth-Morris-Pratt algorithm

- How are the number of shifts determined?
- Let $\pi[q]=\max \{k: k<q$ and $T[1 \ldots k]$ is a suffix of $T[1 \ldots q]\}$
- Example:

$$
\begin{array}{cccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline T[i] & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} \\
\pi[i] & 0 & 0 & 1 & 2 & 3 & 0 & 1
\end{array}
$$

Knuth-Morris-Pratt algorithm

- How are the number of shifts determined?
- Let $\pi[q]=\max \{k: k<q$ and $T[1 \ldots k]$ is a suffix of $T[1 \ldots q]\}$
- Example:

$$
\begin{array}{cccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline T[i] & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} \\
\pi[i] & 0 & 0 & 1 & 2 & 3 & 0 & 1
\end{array}
$$

- If, at position i, q characters match (i.e. $T[1 \ldots q]=S[i \ldots i+q-1])$, then
- if $q=0$, shift pattern 1 position right
- otherwise, shift pattern $q-\pi[q]$ positions right

Knuth-Morris-Pratt algorithm

- Example:
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- Example:
- S: bacbababaabcbab
- T: ababaca
- 5 characters match, so $q=5$

Knuth-Morris-Pratt algorithm

- Example:
- S: bacbababaabcbab
- T: ababaca
- 5 characters match, so $q=5$
$-\pi[q]=\pi[5]=3$

Knuth-Morris-Pratt algorithm

- Example:
- S: bacbababaabcbab
- T: ababaca
- 5 characters match, so $q=5$
$-\pi[q]=\pi[5]=3$
- Then shift $q-\pi[q]=5-3=2$ positions

Knuth-Morris-Pratt algorithm

- Example:
- S: bacbababaabcbab
- T: ababaca
- 5 characters match, so $q=5$
$-\pi[q]=\pi[5]=3$
- Then shift $q-\pi[q]=5-3=2$ positions
- S: bacbababaabcbab
- T: ababaca

Knuth-Morris-Pratt algorithm

- Given π, matching only takes $O(n)$ time
- π can be computed in $O(m)$ time
- Total time complexity of KMP therefore $O(n+m)$ worst case

Knuth-Morris-Pratt algorithm

```
int* compute_pi(const string &t) {
    int m = t.size();
    int *pi = new int[m + 1];
    if (0 <= m) pi[0] = 0;
    if (1 <= m) pi[1] = 0;
    for (int i = 2; i <= m; i++) {
        for (int j = pi[i - 1]; ; j = pi[j]) {
            if (t[j] == t[i - 1]) {
                pi[i] = j + 1;
                break;
            }
            if (j == 0) {
                pi[i] = 0;
                break;
            }
        }
    }
    return pi;
}
```


Knuth-Morris-Pratt algorithm

```
int string_match(const string &s, const string &t) {
    int n = s.size(),
        m = t.size();
    int *pi = compute_pi(t);
    for (int i = 0, j = 0; i < n; ) {
        if (s[i] == t[j]) {
            i++; j++;
            if (j == m) {
                return i - m;
            }
        }
        else if (j > 0) j = pi[j];
        else i++;
    }
    delete[] pi;
    return -1;
}
```


Sets of strings

- We often have sets (or maps) of strings
- Insertions and lookups usually guarantee $O(\log n)$ comparisons
- But string comparisions are actually pretty expensive...
- There are other data structures, like tries, which do this in a more clever way

Tries

Tries

Tries

Tries

```
struct node {
    node* children[26];
    bool is_end;
    node() {
        memset(children, 0, sizeof(children));
        is_end = false;
    }
};
```


Tries

```
void insert(node* nd, char *s) \{
    if (*s) \{
    if (!nd->children[*s - 'a'])
                nd->children[*s - 'a'] = new node();
    insert(nd->children[*s - 'a'], s + 1);
    \} else \{
    nd->is_end = true;
    \}
\}
```


Tries

```
bool contains(node* nd, char *s) {
    if (*s) {
    if (!nd->children[*s - 'a'])
                return false;
                            return contains(nd->children[*s - 'a'], s + 1)
    } else {
        return nd->is_end;
    }
}
```


Tries

node *trie = new node();
insert(trie, "banani");
if (contains(trie, "banani")) \{ // ...
\}

Tries

- Time complexity?
- Let k be the length of the string we're inserting/looking for
- Lookup and insertion are both $O(k)$
- Also very space efficient...

Suffix tries

- Say we're dealing with some string S of length n
- Let's insert all suffixes of S into a trie
- $S=$ banani

```
- insert(trie, "banani");
- insert(trie, "anani");
    - insert(trie, "nani");
    - insert(trie, "ani");
    - insert(trie, "ni");
    - insert(trie, "i");
```


Suffix tries

Suffix tries

- There are a lot of cool things we can do with suffix tries
- Example: String matching
- If a string T is a substring in S, then (obviously) it has to start at some suffix of S
- So we can simply look for T in the suffix trie of S, ignoring whether the last node is an end node or not
- This is just $O(m)$...

Suffix tries

Suffix tries

- String matching is fast if we have the suffix trie for S
- But what is the time complexity of suffix trie construction?
- There are n suffixes, and it takes $O(n)$ to insert each of them
- So $O\left(n^{2}\right)$, which is pretty slow
- Can we do better?
- There can be up to n^{2} nodes in the graph, so this is actually optimal...

Suffix trees

- There exists a compressed version of a suffix trie, called a suffix tree
- It can be constructed in $O(n)$, and has all the features that suffix tries have
- But the $O(n)$ construction algorithm is pretty complex, a big disadvantage for us

Suffix arrays

- A variation of the previous structures
- Can do everything the other structures can do, with a small overhead
- Can be constructed pretty quickly with relatively simple code

Suffix arrays

- Take all the suffixes of S
banani
anani
nani
ani
ni
i
- and sort them
anani
ani
banani
i
nani
ni

Suffix arrays

- We can use this array to do everything that suffix tries can do
- Like string matching

Suffix arrays

- Let's look for nan

anani
ani
banani
i
nani
ni

Suffix arrays

- Let's look for nan
- The first letter in the string has to be n, so we can binary search for the range of strings starting with n

```
anani
ani
banani
i
nani
ni
```


Suffix arrays

- Let's look for nan
- The first letter in the string has to be n, so we can binary search for the range of strings starting with n
nani
ni

Suffix arrays

- Let's look for nan
- The second letter in the string has to be a, so we can binary search for the range of strings that have a as the second letter

nani

ni

Suffix arrays

- Let's look for nan
- The second letter in the string has to be a, so we can binary search for the range of strings that have a as the second letter

[^0]
Suffix arrays

- Let's look for nan
- The third letter in the string has to be n, so we can binary search for the range of strings that have n as the third letter

[^1]
Suffix arrays

- Let's look for nan
- The third letter in the string has to be n, so we can binary search for the range of strings that have n as the third letter

[^2]
Suffix arrays

- Let's look for nan
- The third letter in the string has to be n, so we can binary search for the range of strings that have n as the third letter

nani

- If there is at least one string left, we have a match

Suffix arrays

- Time complexity?
- For each letter in T, we do two binary searches on the n suffixes to find the new range
- Time complexity is $O(m \times \log n)$
- A bit slower than doing it with a suffix trie, but still not bad

Suffix arrays

- But how do we construct a suffix array for a string?
- A simple sort (suffixes) is $O\left(n^{2} \log (n)\right)$, because comparing two suffixes is $O(n)$
- And we still have the same problem as with suffix tries, there are almost n^{2} characters if we store all suffixes

Suffix arrays

- The second problem is easy to fix
- Just store the indices of the suffixes

```
anani
ani
banani
i
nani
ni
- becomes
1: anani
3: ani
0: banani
5: i
2: nani
4: ni
```


Suffix arrays

- What about the construction?
- In short, we
- sort all suffixes by only looking at the first letter
- sort all suffixes by only looking at the first 2 letters
- sort all suffixes by only looking at the first 4 letters
- sort all suffixes by only looking at the first 8 letters
- ...
- sort all suffixes by only looking at the first 2^{i} letters
- ...
- If we use an $O(n \log n)$ sorting algorithm, this is $O\left(n \log ^{2} n\right)$
- We can also use an $O(n)$ sorting algorithm, since all sorted values are between 0 and n, bringing it down to $O(n \log n)$

Suffix arrays

```
struct suffix_array {
    struct entry {
        pair<int, int> nr;
        int p;
        bool operator <(const entry &other) {
        return nr < other.nr;
        }
    };
    string s;
    int n;
    vector<vector<int> > P;
    vector<entry> L;
    vi idx;
    // constructor
};
```


Suffix arrays

```
suffix_array(string _s) : s(_s), n(s.size()) {
    L = vector<entry> (n);
    P.push_back(vi(n));
    idx = vi(n);
    for (int i = 0; i < n; i++) {
        P[0][i] = s[i];
    }
    for (int stp = 1, cnt = 1; (cnt >> 1) < n; stp++, cnt <<= 1) {
        P.push_back(vi(n));
        for (int i = 0; i < n; i++) {
            L[i].p = i;
            L[i].nr = make_pair(P[stp - 1][i], i + cnt < n ? P[stp - 1][i + cnt] : -1);
        }
        sort(L.begin(), L.end());
        for (int i = 0; i < n; i++) {
            if (i > 0 && L[i].nr == L[i - 1].nr) {
            P[stp][L[i].p] = P[stp][L[i - 1].p];
        } else {
            P[stp][L[i].p] = i;
        }
        }
    }
    for (int i = 0; i < n; i++) {
        idx[P[P.size() - 1][i]] = i;
    }
}
```


Suffix arrays

- There is also one other useful operation on suffix arrays
- Finding the longest common prefix (Icp) of two suffixes of S

```
1: anani
3: ani
0: banani
5: i
2: nani
4: ni
\(-\operatorname{lcp}(1,3)=2\)
- \(\operatorname{lcp}(2,1)=0\)
```

- This function can be implemented in $O(\log n)$ by using intermediate results from the suffix array construction

Suffix arrays

```
int lcp(int \(x\), int \(y\) ) \{
    int res \(=0\);
    if ( \(\mathrm{x}=\mathrm{y}\) ) return \(\mathrm{n}-\mathrm{x}\);
    for (int \(k=P . \operatorname{size}()-1 ; k>=0\) \&\& \(x<n\) \&\& \(y<n ; k--\) ) \{
        if (P[k][x] == P[k][y]) \{
            \(\mathrm{x}+=1 \ll \mathrm{k}\);
            \(\mathrm{y}+=1 \ll \mathrm{k}\);
            res += \(1 \ll \mathrm{k}\);
        \}
    \}
    return res;
\}
```


Longest common substring

- Given two strings S and T, find their longest common substring
- $\mathrm{S}=$ banani
- T = kanina
- Their longest common substring is ani
- see example

[^0]: nani

[^1]: nani

[^2]: nani

