
Formalizing the translation method in Agda

Bjarki Ágúst Guðmundsson
MSc in Computer Science, thesis defence

School of Computer Science
Reykjavík University

http://ru.is/td
http://ru.is

Introduction

Bijections

• Given two sets of combinatorial objects, 𝑃 and 𝑄, do they have the
same cardinality?

• If yes, find a bijection between 𝑃 and 𝑄
• Clearly possible if and only if |𝑃 | = |𝑄|

• Usually we don’t just want any such bijection
• When such a bijection is defined in a “natural” way, it will often give

insight into why the two sets have the same cardinality
• This will help further study on these, as well as related sets of

combinatorial objects

1

Methods

• Many combinatorialists have based their careers on finding “elegant”
bijections

• Finding bijections with nice properties has been considered an art
form, requiring both creativity and ingenuity

• Many have sought ways to make it easier to come up with such
bijections

Bijection machines: Parameterized bijections that work for a general
class of problems

Semi-automatic methods: Methods that help derive a bijection for a
given problem, but requires some assistance from the
combinatorialist

Fully automatic methods: Some have envisioned completely automatic
methods for finding bijections

2

The translation method

• The translation method has proved to be a very helpful tool for
coming up with bijections

• Already been many successful applications

• Unfortunately the method is somewhat loosely defined
• Its current implementation, in Maple, has some caveats
• Cumbersome and clumsy to apply the method in its current form

• We propose a formalization of the translation method in the
programming language Agda, along with various extensions

• Hopefully making it easier for combinatorialists to apply the
translation method to their own problems

3

The translation method

The translation method

• Introduced by Wood and Zeilberger [3]

• Given two sets of combinatorial objects, 𝑃 and 𝑄
• Also given an algebraic proof that |𝑃 | = |𝑄|
• Want a natural bijection between 𝑃 and 𝑄

• The translation method makes use of the algebraic proof that
|𝑃 | = |𝑄|, “lifting” the proof to a bijection between 𝑃 and 𝑄

• If the algebraic proof is “natural”, the hope is that the resulting
bijection will be natural as well

4

Lifting an expression

Definition
Whenever 𝑛 is an integer expression, and 𝑁 is a set of combinatorial
objects with |𝑁| = 𝑛, we say that 𝑛 can be lifted to 𝑁 .

Example
The integer 2𝑘 can be lifted to the set of binary strings of length 𝑘.

• In this way lifting will be used to give a combinatorial interpretation
of an expression

Example
The integer 2𝑘 can also be lifted to the set of integers {1, … , 2𝑘}.

5

Lifting an expression

Expression 𝐸 Lifted 𝐸
𝑐 [𝑐] = {0, 1, … , 𝑐 − 1}

𝑎 ⋅ 𝑏 𝐴 × 𝐵
𝑎 + 𝑏 𝐴 ⊔ 𝐵 (labeling elements with L or R)

2𝑛 binary strings of length 𝑛: 2𝑛

(𝑛
𝑘) binary strings of length 𝑛 with exactly 𝑘 1’s: ([𝑛]

𝑘)

Table 1: Standard interpretations of common expressions. Here 𝑎 and 𝑏 can
be lifted to 𝐴 and 𝐵, respectively.

6

Lifting an expression

Example
The expression 2 ⋅ 2𝑘−1 can be lifted to the set {0, 1} × 2𝑘−1.

7

Lifting an identity

Definition
If 𝑛 and 𝑚 are integers which can be lifted to 𝑁 and 𝑀 , respectively,
and 𝑓 ∶ 𝑁 → 𝑀 is a bijection between 𝑁 and 𝑀 , then we say that the
identity 𝑛 = 𝑚 can be lifted to 𝑓 .

Example
Consider the identity 2𝑘 = 2 ⋅ 2𝑘−1. We have seen that 2𝑘 can be lifted
to 2𝑘 and 2 ⋅ 2𝑘−1 can be lifted to {0, 1} × 2𝑘−1. Now let
bin𝑘 ∶ 2𝑘 → {0, 1} × 2𝑘−1 be a function defined as follows:

bin𝑘(𝑠) = { (0, 𝑡) if 𝑠 = 0𝑡
(1, 𝑡) if 𝑠 = 1𝑡

It’s clear that bin𝑘 forms a bijection between 2𝑘 and {0, 1} × 2𝑘−1, so
we can say that the identity 2𝑘 = 2 ⋅ 2𝑘−1 can be lifted to the bijection
bin𝑘.

8

Lifting an identity

• Lifting also gives us a combinatorial interpretation of identities, but
now in terms of bijections

• The translation method is just a way to lift the identity |𝑃 | = |𝑄|

• Before giving the translation method, we need some building blocks

9

Building blocks

• Consider the algebraic proof that |𝑃 | = |𝑄|. It may rely on facts
such as:

• commutativity of addition, associativity of multiplication,
distributivity of multiplication over addition (the natural numbers
form a commutative semiring)

• definitions, such as 2𝑛 = 2 ⋅ 2𝑛−1

• congruence of addition and multiplication
• that = forms an equivalence relation
• “smaller” versions of the identity being proven, by induction

• Each of these facts, interpreted as identities, can be lifted to a
corresponding bijection

10

Building blocks

Example
Commutativity of addition: 𝑎 + 𝑏 = 𝑏 + 𝑎. If 𝑎, 𝑏 can be lifted to 𝐴, 𝐵,
respectively, we’re looking for a bijection 𝑓 ∶ 𝐴 ⊔ 𝐵 → 𝐵 ⊔ 𝐴.

𝑓(𝑥) = { 𝑦R if 𝑥 = 𝑦L
𝑦L if 𝑥 = 𝑦R

Example
Distributivity of multiplication over addition (from the left):
𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐. If 𝑎, 𝑏, 𝑐 can be lifted to 𝐴, 𝐵, 𝐶, respectively,
we’re looking for a bijection 𝑓 ∶ 𝐴 × (𝐵 ⊔ 𝐶) → (𝐴 × 𝐵) ⊔ (𝐴 × 𝐶).

𝑓(𝑥, 𝑦) = { (𝑥, 𝑧)L if 𝑦 = 𝑧L
(𝑥, 𝑧)R if 𝑦 = 𝑧R

11

Building blocks

Identity Lifted identity
𝑎 = 𝑎 𝐴 ≅ 𝐴
𝑎 = 𝑏
𝑏 = 𝑎

𝐴 ≅ 𝐵
𝐵 ≅ 𝐴

𝑎 = 𝑏 𝑏 = 𝑐
𝑎 = 𝑐

𝐴 ≅ 𝐵 𝐵 ≅ 𝐶
𝐴 ≅ 𝐶

𝑎 + 𝑏 = 𝑏 + 𝑎 𝐴 ⊔ 𝐵 ≅ 𝐵 ⊔ 𝐴
𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 𝐴 × 𝐵 ≅ 𝐵 × 𝐴

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) (𝐴 ⊔ 𝐵) ⊔ 𝐶 ≅ 𝐴 ⊔ (𝐵 ⊔ 𝐶)
(𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) (𝐴 × 𝐵) × 𝐶 ≅ 𝐴 × (𝐵 × 𝐶)

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 𝐴 × (𝐵 ⊔ 𝐶) ≅ (𝐴 × 𝐵) ⊔ (𝐴 × 𝐶)

12

Building blocks

Identity Lifted identity
𝑎 + 0 = 𝑎 𝐴 ⊔ ∅ ≅ 𝐴
𝑎 ⋅ 1 = 𝑎 𝐴 × [1] ≅ 𝐴
𝑎 ⋅ 0 = 0 𝐴 × ∅ ≅ ∅

𝑎 = 𝑐 𝑏 = 𝑑
𝑎 + 𝑏 = 𝑐 + 𝑑

𝐴 ≅ 𝐶 𝐵 ≅ 𝐷
𝐴 ⊔ 𝐵 ≅ 𝐶 ⊔ 𝐷

𝑎 = 𝑐 𝑏 = 𝑑
𝑎 ⋅ 𝑏 = 𝑐 ⋅ 𝑑

𝐴 ≅ 𝐶 𝐵 ≅ 𝐷
𝐴 × 𝐵 ≅ 𝐶 × 𝐷

𝑎𝑛 = 𝑎 ⋅ 𝑎𝑛−1 𝐴𝑛 ≅ 𝐴 × 𝐴𝑛−1

(𝑛
𝑘) = (𝑛−1

𝑘−1) + (𝑛−1
𝑘) ([𝑛]

𝑘) ≅ ([𝑛−1]
𝑘−1) ⊔ ([𝑛−1]

𝑘)

13

The translation method

Definition
Given two sets of combinatorial objects, 𝑃 and 𝑄, as well as an
algebraic proof that |𝑃 | = |𝑄|, the translation method allows one to lift
the proof to a bijection between 𝑃 and 𝑄. The method proceeds as
follows:

1. Decompose the algebraic proof into atomic proof steps. Most of the
atomic proof steps will rely on one or more of the identities
presented in the previous table.

2. Lift each atomic proof step to a bijection. Again, this will usually be
a simple combination of one or more of the lifted identities, and
their associated bijections, from the previous table. If the proof step
is using a “smaller” identity of the form |𝑃 | = |𝑄| using induction,
then that identity can be lifted recursively using the translation
method. If neither the previous table nor recursion can be used, the
proof step has to be lifted manually.

3. Compose the lifted bijections for a bijection between 𝑃 and 𝑄. 14

Applying the translation method

Example
Let’s consider the equality 2𝑛 ⋅ 2𝑛 = 4𝑛. We can prove this equality by
induction as follows. When 𝑛 = 0, we have 20 ⋅ 20 = 40 ⟺ 1 ⋅ 1 = 1,
which is true. When 𝑛 > 0, we have

2𝑛 ⋅ 2𝑛 = (2 ⋅ 2𝑛−1) ⋅ (2 ⋅ 2𝑛−1) def. exponentiation (1)
= ((2 ⋅ 2𝑛−1) ⋅ 2) ⋅ 2𝑛−1 associativity (2)
= (2 ⋅ (2 ⋅ 2𝑛−1)) ⋅ 2𝑛−1 commutativity (3)
= ((2 ⋅ 2) ⋅ 2𝑛−1) ⋅ 2𝑛−1 associativity (4)
= (2 ⋅ 2) ⋅ (2𝑛−1 ⋅ 2𝑛−1) associativity (5)
= 4 ⋅ (2𝑛−1 ⋅ 2𝑛−1) 2 ⋅ 2 = 4 (6)
= 4 ⋅ 4𝑛−1 induction (7)
= 4𝑛 def. exponentiation (8)

15

Applying the translation method

• Notice that 2𝑛 ⋅ 2𝑛 and 4𝑛 can be lifted to 2𝑛 × 2𝑛 and 4𝑛,
respectively

• the set of pairs of binary strings of length 𝑛
• the set of quaternary strings of length 𝑛

• Using the translation method, we might be able to lift our equality
to a bijection 2𝑛 × 2𝑛 ≅ 4𝑛 based on our inductive proof

• First we need to decompose our proof into atomic steps

16

Applying the translation method

2𝑛 ⋅ 2𝑛 = (2 ⋅ 2𝑛−1) ⋅ (2 ⋅ 2𝑛−1) def. exponentiation (1)
= ((2 ⋅ 2𝑛−1) ⋅ 2) ⋅ 2𝑛−1 associativity (2)
= (2 ⋅ (2 ⋅ 2𝑛−1)) ⋅ 2𝑛−1 commutativity (3)
= ((2 ⋅ 2) ⋅ 2𝑛−1) ⋅ 2𝑛−1 associativity (4)
= (2 ⋅ 2) ⋅ (2𝑛−1 ⋅ 2𝑛−1) associativity (5)
= 4 ⋅ (2𝑛−1 ⋅ 2𝑛−1) 2 ⋅ 2 = 4 (6)
= 4 ⋅ 4𝑛−1 induction (7)
= 4𝑛 def. exponentiation (8)

• Next we need to lift each of the atomic steps to a bijection

17

Applying the translation method

Lifting 2𝑛 ⋅ 2𝑛 = (2 ⋅ 2𝑛−1) ⋅ (2 ⋅ 2𝑛−1)
This identity follows from applying the identity 2𝑛 = 2 ⋅ 2𝑛−1 on each
side of the multiplication sign, which is allowed because multiplication
forms a congruence.

The identity 2𝑛 = 2 ⋅ 2𝑛−1 can be lifted to the bijection bin𝑛.
Congruence of multiplication can be lifted to the (parameterized)
bijection

mult-cong𝑓,𝑔 ∶ 𝐴 × 𝐵 → 𝐶 × 𝐷
where 𝑓 ∶ 𝐴 → 𝐶 and 𝑔 ∶ 𝐵 → 𝐷 are bijections.

Combining these, we see that the current step can be lifted to the
bijection

𝜑𝑛,1 = mult-congbin𝑛,bin𝑛

18

Applying the translation method

Lifting (2 ⋅ 2𝑛−1) ⋅ (2 ⋅ 2𝑛−1) = ((2 ⋅ 2𝑛−1) ⋅ 2) ⋅ 2𝑛−1

This is just associativity of multiplication, which we know can be lifted
to the bijection mult-assoc.

One has to be careful, as the identity we have here is of the form
𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐, but mult-assoc was defined in terms of the
identity (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐). Hence

𝜑𝑛,2 = mult-assoc−1

19

Applying the translation method

Lifting ((2 ⋅ 2𝑛−1) ⋅ 2) ⋅ 2𝑛−1 = (2 ⋅ (2 ⋅ 2𝑛−1)) ⋅ 2𝑛−1

This is just commutativity of multiplication, but nested inside the
topmost multiplication on the left side. Thus we can lift this step to
mult-cong𝑓,𝑔, with mult-comm on the left side (and id on the right
side to leave it untouched):

𝜑𝑛,3 = mult-congmult-comm,id

20

Applying the translation method

Lifting (2 ⋅ (2 ⋅ 2𝑛−1)) ⋅ 2𝑛−1 = ((2 ⋅ 2) ⋅ 2𝑛−1) ⋅ 2𝑛−1

This is just a nested application of associativity of multiplication, so
similar to the last two steps, this step can be lifted to

𝜑𝑛,4 = mult-congmult-assoc−1,id

21

Applying the translation method

Lifting ((2 ⋅ 2) ⋅ 2𝑛−1) ⋅ 2𝑛−1 = (2 ⋅ 2) ⋅ (2𝑛−1 ⋅ 2𝑛−1)
This is just associativity of multiplication, and this time it is of the
same form as mult-assoc. Hence this step can be lifted to

𝜑𝑛,5 = mult-assoc

22

Applying the translation method

Lifting (2 ⋅ 2) ⋅ (2𝑛−1 ⋅ 2𝑛−1) = 4 ⋅ (2𝑛−1 ⋅ 2𝑛−1)
Here we’re making use of the fact that 2 ⋅ 2 = 4, on the left side of the
multiplication. We have not seen this identity before, so we’ll have to
lift it manually. We want a bijection 𝑓 ∶ [2] × [2] → [4]. One can verify
that the following is a valid bijection:

𝑓(𝑥, 𝑦) =
⎧{{
⎨{{⎩

0 if 𝑥 = 0 and 𝑦 = 0
1 if 𝑥 = 0 and 𝑦 = 1
2 if 𝑥 = 1 and 𝑦 = 0
3 if 𝑥 = 1 and 𝑦 = 1

However, we could have easily permuted the four values in any way, for
a total of 4! possible valid bijections. Which one is “correct”?

𝜑𝑛,6 = mult-cong𝑓,id

23

Applying the translation method

Lifting 4 ⋅ (2𝑛−1 ⋅ 2𝑛−1) = 4 ⋅ 4𝑛−1

On the right side of the multiplication we are using the identity
2𝑛−1 ⋅ 2𝑛−1 = 4𝑛−1. Notice that this is precisely the identity we are
using the translation method on, but with a smaller value of 𝑛.

As suggested in the definition of the translation method, we will apply
the translation method recursively on this identity to get a lifted
bijection, which we’ll call Φ𝑛−1. This step can then be lifted to

𝜑𝑛,7 = mult-congid,Φ𝑛−1

24

Applying the translation method

Lifting 4 ⋅ 4𝑛−1 = 4𝑛

The symmetry of this identity is 4𝑛 = 4 ⋅ 4𝑛−1, which follows from the
definition of exponentiation. For completeness, the lifted bijection,
quad𝑘 ∶ 4𝑘 → [4] × 4𝑘−1, is as follows:

quad𝑘(𝑠) =
⎧{{
⎨{{⎩

(0, 𝑡) if 𝑠 = 0𝑡
(1, 𝑡) if 𝑠 = 1𝑡
(2, 𝑡) if 𝑠 = 2𝑡
(3, 𝑡) if 𝑠 = 3𝑡

We can lift this step to
𝜑𝑛,8 = quad−1

𝑛

25

Applying the translation method

• Now that we’ve lifted the individual steps to bijections, the last step
of the translation method is to compose these bijections to get the
required bijection 2𝑛 × 2𝑛 ≅ 4𝑛:

Φ𝑛 = 𝜑𝑛,8 ∘ 𝜑𝑛,7 ∘ 𝜑𝑛,6 ∘ 𝜑𝑛,5 ∘ 𝜑𝑛,4 ∘ 𝜑𝑛,3 ∘ 𝜑𝑛,2 ∘ 𝜑𝑛,1

• There are two issues with this construction:
• Some of the identities in the intermediate steps assumed 𝑛 ≥ 1
• We are applying the translation method recursively, but currently

have no base case

• Both of these issues can be fixed by treating 𝑛 = 0 as a base case.
There is a unique bijection 20 × 20 ≅ 40:

Φ0(𝜀, 𝜀) = 𝜀

26

Applying the translation method

𝑠 Φ(𝑠)
(𝜀, 𝜀) 𝜀

(0, 0) 0
(0, 1) 2
(1, 0) 1
(1, 1) 3

(00, 00) 00
(00, 01) 02
(00, 10) 20
(00, 11) 22

𝑠 Φ(𝑠)
(01, 00) 01
(01, 01) 03
(01, 10) 21
(01, 11) 23
(10, 00) 10
(10, 01) 12
(10, 10) 30
(10, 11) 32
(11, 00) 11
(11, 01) 13
(11, 10) 31
(11, 11) 33

27

Applying the translation method

𝑠 Φ(𝑠)
(0000101011, 0010111111) 0020323233
(0000101100, 1101010100) 2202121300
(0001110010, 0000000010) 0001110030
(0010000110, 1101110101) 2212220312
(0011011101, 0001010101) 0013031303
(0100000000, 0010011000) 0120022000
(0110000101, 0101001010) 0312002121
(0110100010, 1110000010) 2330100030
(1000011101, 1001101101) 3002213303
(1000101111, 0001010011) 1002121133
(1000110011, 0011010001) 1022130013
(1001000101, 0100011001) 1201022103
(1001001011, 1001111011) 3003223033
(1011011110, 0010101100) 1031213310

28

Applying the translation method

• The bijection produced is not direct, but rather a composition of
many simpler bijections

• The resulting bijection is not immediately useful, but is rather
intended to be experimentally used by the combinatorialist to
discover a direct bijection

• Applying the translation method is very tedious to do by hand
• Luckily the tedious parts are very mechanical, and can be easily

performed by a computer
• Wood and Zeilberger noticed this, and gave an implementation in

Maple

29

Implementation

• There are some issues with their implementation, however:
• The conversion from the algebraic proof to code is unintuitive
• Maple is a dynamically-typed language, making it easy to make small

mistakes
• Maple is proprietary software, and one has to buy a license to use it
• Addition gives an error if the given sets are not disjoint

(2 ⋅ 𝑎 = 𝑎 + 𝑎)
• When specifying bijections explicitly, as we did for the base cases,

nothing to check that they are indeed bijections
• Taking this to the extreme, there’s no guarantee that their

implementation behaves as advertised

30

Implementation

• We started implementing the translation method in a
statically-typed language to address these issues

• Soon realized that static typing was not enough to address all the
issues:

• binary strings vs. integer compositions
• binary strings of length 5 vs. binary strings of length 10

• This suggested using a programming language that supports
dependent types

• Types that can depend on values
• binary strings of length 5 vs. binary strings of length 10
• Much more powerful than that: allows one to do formal proofs

31

Implementation

• We looked at two general-purpose programming languages that
supported dependent types

• Agda
• Idris

• Goal: Implement the translation method in Agda, addressing the
issues that we found in the previous implementation, possibly
extending the method with some helpful features

32

Agda

Agda

• Agda is a pure functional programming language, similar in many
respects to Haskell, that supports dependent types

• Because of its support for dependent types, it’s possible to state and
prove formal theorems as Agda code

• It also has some simple tools to help with that, and can therefore be
considered a proof assistant

33

Algebraic proofs in Agda

• Agda’s standard library comes with a handful of theorems about
algebraic properties

+-comm : ∀ a b → a + b ≡ b + a

*-assoc : ∀ a b c → (a * b) * c ≡ a * (b * c)

distribʳ-*-+ : ∀ a b c → (b + c) * a ≡ b * a + c * a

• These can then be combined to prove more complex identities
• Consider (𝑏 + 𝑐) ⋅ 𝑎 = 𝑐 ⋅ 𝑎 + 𝑎 ⋅ 𝑏

34

Proofs in Agda

ex : ∀ {a b c} → (b + c) * a ≡ c * a + a * b
ex {a} {b} {c} = begin
(b + c) * a ≡⟨ ? ⟩
c * a + a * b ∎

35

Proofs in Agda

ex : ∀ {a b c} → (b + c) * a ≡ c * a + a * b
ex {a} {b} {c} = begin
(b + c) * a ≡⟨ distribʳ-*-+ a b c ⟩
b * a + c * a ≡⟨ ? ⟩
c * a + a * b ∎

36

Proofs in Agda

ex : ∀ {a b c} → (b + c) * a ≡ c * a + a * b
ex {a} {b} {c} = begin
(b + c) * a ≡⟨ distribʳ-*-+ a b c ⟩
b * a + c * a ≡⟨ +-comm (b * a) (c * a) ⟩
c * a + b * a ≡⟨ ? ⟩
c * a + a * b ∎

37

Proofs in Agda

ex : ∀ {a b c} → (b + c) * a ≡ c * a + a * b
ex {a} {b} {c} = begin
(b + c) * a ≡⟨ distribʳ-*-+ a b c ⟩
b * a + c * a ≡⟨ +-comm (b * a) (c * a) ⟩
c * a + b * a ≡⟨ cong (λ x → c * a + x) (*-comm b a) ⟩
c * a + a * b ∎

38

The translate module

The translate module

• Idea: Ability to take an existing algebraic proof in Agda, and apply
the translation method directly to it (or by changing as little as
possible)

• This is not immediately possible: given something of type a ≡ b,
there is no way to access the individual proof steps

• Reimplemented the basic data types in Agda, storing the relevant
information where necessary

39

The translate module

• Expressions are now stored in an abstract syntax tree, Expr
• Calling the lift function gives the lifted to a set

• The equivalence relation, ≡, maintains bijection-related information
• Calling the bijection function performs the translation method,

returning the lifted bijection

• We then proved, again, many of the existing algebraic properties
under our new definition of expressions and equivalence, augmented
with their associated lifted bijections

• This further allowed us to prove that our expressions formed a
commutative semiring under our equivalence relation

40

Using the translate module

• Just as with Agda, we can now use these simple algebraic properties
to prove more complex identities

• Say we want to prove 2𝑛 ⋅ 2𝑛 = 4𝑛

• Towards that, let’s begin by simply proving 2 ⋅ 2 = 4

two-four : nat 2 * nat 2 ≡ nat 4
two-four = proof Prefl (from-just (toBij {nat 2 * nat 2} {nat 4} (

((nothing , nothing) , nothing) ∷
((nothing , just nothing) , just nothing) ∷
((just nothing , nothing) , just (just nothing)) ∷
((just nothing , just nothing) , just (just (just nothing))) ∷ []

)))

41

Using the translate module

• Now we can go on to prove our identity, starting with the base case:

phi : ∀ {n} → 2^ n * 2^ n ≡ 4^ n
phi {ℕzero} = proof Prefl (from-just (toBij {2^ 0 * 2^ 0} {4^ 0} (

(([] , []) , []) ∷ []
)))

• For the inductive case, recall our previous inductive proof

42

Using the translate module

2𝑛 ⋅ 2𝑛 = (2 ⋅ 2𝑛−1) ⋅ (2 ⋅ 2𝑛−1) def. exponentiation (1)
= ((2 ⋅ 2𝑛−1) ⋅ 2) ⋅ 2𝑛−1 associativity (2)
= (2 ⋅ (2 ⋅ 2𝑛−1)) ⋅ 2𝑛−1 commutativity (3)
= ((2 ⋅ 2) ⋅ 2𝑛−1) ⋅ 2𝑛−1 associativity (4)
= (2 ⋅ 2) ⋅ (2𝑛−1 ⋅ 2𝑛−1) associativity (5)
= 4 ⋅ (2𝑛−1 ⋅ 2𝑛−1) 2 ⋅ 2 = 4 (6)
= 4 ⋅ 4𝑛−1 induction (7)
= 4𝑛 def. exponentiation (8)

43

Using the translate module

phi {ℕsuc n} = begin
2^ (ℕsuc n) * 2^ (ℕsuc n) ≡⟨ *-cong 2^-def 2^-def ⟩
(nat 2 * 2^ n) * (nat 2 * 2^ n) ≡⟨ sym *-assoc ⟩
((nat 2 * 2^ n) * nat 2) * 2^ n ≡⟨ *-cong *-comm refl ⟩
(nat 2 * (nat 2 * 2^ n)) * 2^ n ≡⟨ *-cong (sym *-assoc) refl ⟩
((nat 2 * nat 2) * 2^ n) * 2^ n ≡⟨ *-assoc ⟩
(nat 2 * nat 2) * (2^ n * 2^ n) ≡⟨ *-cong two-four refl ⟩
(nat 4) * (2^ n * 2^ n) ≡⟨ *-cong refl (phi {n}) ⟩
(nat 4) * (4^ n) ≡⟨ sym 4^-def ⟩
4^ (ℕsuc n) ∎

44

Using the translate module

• After proving this, it now becomes as simple as calling
bijection phi to get the translated bijection!

• This will give us the same bijection as when we applied the
translation method by hand

45

Semiring solver

Tools for semirings

• As we saw, our expressions form a commutative semiring under our
new definition of equivalence

• While that is interesting in its own right, we wondered if we could
use that fact in interesting ways

• Tools for automatically proving equalities in commutative semirings,
often known as semiring solvers

46

Semiring solver

• From a bird’s-eye view, a semiring solver works as follows:

𝑓 𝑔

𝑓 ′ 𝑔′

normalize normalize

refl

• Given two expressions, the solver brings them both to normal form,
and then asks the user to prove that the normal forms are equivalent

• If the two expressions are equivalent, their normal forms will often
be identical, in which case a simple refl will do

47

Semiring solver

• The state of art in semiring solvers seems to be given by Grégoire
and Mahboubi [2]

• This is currently the semiring solver used by Coq
• It has been partially ported to Agda, but it turns out that this

implementation is not general enough to support our semiring

• Instead of trying to interface with Coq, or fixing Agda’s
implementation, we decided to make our own implementation
specifically for our semiring loosely based on [2]

• Simpler, but less efficient normal form

48

Semiring solver

• We could nevertheless make use of Agda’s solver interface, so we
only had to implement the normalize function, and prove its
correctness:

normalize : ∀ {n}
→ :Expr n
→ RightLeaningSumOfNormalizedMonomials n

normalize-correct : ∀ {n}
→ (Γ : Env n)
→ (x : :Expr n)
→ ⟦ normalize x ⟧RLSNM Γ ≡ ⟦ x ⟧ Γ

49

Semiring solver

• Consider the identity (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2

• Usually straightforward to prove, but tedious
• Using the solver:

sq : ∀ a b → (a + b) * (a + b) ≡ a * a + nat 2 * a * b + b * b
sq = solve 2 (λ x y → (x :+ y) :* (x :+ y)

:= x :* x :+ :nat 2 :* x :* y :+ y :* y)
refl

50

Semiring solver

• If we have two equivalent expressions that only contain variables,
constants, addition and multiplication, the solver will always give
identical normal forms

• If it includes other constructs, such as functions, it may or may not
give identical normal forms

51

Cancellation

Cancellation

• So far we have ignored operations such as subtraction and division
• Working with natural numbers in Agda
• These numbers are supposed to represent set cardinalities

• If we have the expression 𝑎 − 𝑏, what is 𝐴 ∖ 𝐵 supposed to represent
if 𝐵 ⊈ 𝐴?

• Wood and Zeilberger came up with a way to make sense of this in
the translation method

• In an earlier paper, Feldman and Propp [1] developed a theory of
“cancellation procedures”

• Turns out to give the same approach for subtraction as Wood and
Zeilberger’s

• Also supports other operations

52

Cancellation

• We have a function 𝑓 that somehow adds structure to the input set
• 𝑓1(𝑆) = 𝑆 ⊔ 𝐶
• 𝑓2(𝑆) = 𝑆 × 𝐶
• 𝑓3(𝑆) = 𝑆𝑘

• 𝑓4(𝑆) = 2𝑆

• Given a bijection 𝑓(𝐴) ≅ 𝑓(𝐵), recover a bijection 𝐴 ≅ 𝐵,
essentially “cancelling” the 𝑓 construction

• Given a bijection 𝐴 ⊔ 𝐶 ≅ 𝐵 ⊔ 𝐶, recover a bijection 𝐴 ≅ 𝐵
• Feldman and Propp’s theory tells us when a function is cancellable

• Possible for 𝑓1 and 𝑓3 without any conditions, 𝑓2 if 𝐶 has a
distinguished element, but 𝑓4 is not cancellable

• They also provide polynomial-time “cancellation procedures” for 𝑓1,
𝑓2 and 𝑓3

53

Cancellation of addition

• The cancellation procedure for addition is as follows:

Definition (Cancellation of addition)
Given an 𝑎 ∈ 𝐴, as well as a bijection 𝑓 ∶ 𝐴 ⊔ 𝐶 → 𝐵 ⊔ 𝐶, produce an
element of 𝐵 as follows:

1. If 𝑓(𝑎) ∈ 𝐵, return 𝑓(𝑎). Otherwise let 𝑐 = 𝑓(𝑎) and continue:

2. If 𝑓(𝑐) ∈ 𝐵, return 𝑓(𝑐). Otherwise let 𝑐 = 𝑓(𝑐), and go back to
step 2.

54

Cancellation of addition

𝑎1

𝑎2

𝑎3

𝑐3

𝑐1

𝑐2

𝑏1

𝑏2

𝑏3

𝑐1

𝑐2

𝑐3

𝐴

𝐶 𝐶

𝐵

𝑎1

𝑎2

𝑎3

𝑐3

𝑐1

𝑐2

𝑏1

𝑏2

𝑏3

𝑐1

𝑐2

𝑐3

• The resulting bijection 𝐴 ≅ 𝐵 will have 𝑎1 ↦ 𝑏3, 𝑎2 ↦ 𝑏2 and
𝑎3 ↦ 𝑏1

55

Cancellation of addition

• We implemented cancellation of addition in Agda:

+-cancel : ∀ {a b c} → a + c ≡ b + c → a ≡ b

• Trivial to implement in many programming languages, but not in
Agda:

• We have to prove that this forms a bijection
• Agda needs to recognize that the program terminates, to make sure

logic is sound
• Halting problem is undecidable
• Heuristics used to recognize if a program terminates

• Yet to implement other cancellation procedures, but believe the
same techniques can be used

56

Conclusions and future work

Conclusions

• We did the following:
• Gave a formal implementation of the translation method in Agda
• Implemented a semiring solver that can be used in conjunction with

the translation method
• Implemented the cancellation procedure for addition in our translate

module
• Showed how division and 𝑘-th roots can be handled when applying

the translation method

• We believe the translate module is ready for use by other
combinatorialists, and we hope this will make it easier to apply the
translation method to their own problems

57

Future work

• Despite that, there are still things that can be improved
• Would be nice to be able to write nat 3 simply as 3

• There is some code duplication due to the solver
• Current design makes it a bit difficult to add new functions and data

types
• Implement the remaining cancellation procedures

58

Thanks!

59

References I

David Feldman and James Propp.
Producing new bijections from old.
Advances in Mathematics, 113(1):1–44, 1995.

Benjamin Grégoire and Assia Mahboubi.
Proving equalities in a commutative ring done right in Coq.
In International Conference on Theorem Proving in Higher Order
Logics, pages 98–113. Springer, 2005.
Philip Matchett Wood and Doron Zeilberger.
A translation method for finding combinatorial bijections.
Annals of Combinatorics, 13(3):383, 2009.

60

	Introduction
	The translation method
	Agda
	The translate module
	Semiring solver
	Cancellation
	Conclusions and future work

