Enumerating permutations sortably by k passes through a pop-stack

Anders Claesson
Bjarki Ágúst Guðmundsson

Permutations

- Permutation of length n : ordering of $\{1,2, \ldots, n\}$
- 1234
- 1324
- 4321
- Identity permutation: the increasing permutation
- 123456

Stacks

- Stack: LIFO data structure with two operations:
- Push: Add an element to the top of the stack
- Pop: Remove the top-most element from the stack

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable, 3142 is not
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary

Sorting with a stack

Problem (Knuth, 1968)

How many permutations of length n can be sorted by a single pass through a stack?

- 3124 is stack-sortable, 3142 is not
- Greedy algorithm
- Keep the stack in increasing order
- Push when possible
- Pop when necessary
- Stack-sortable permutations:
- Simple description in terms of pattern avoidance
- Enumerated by the Catalan numbers C_{n}

Sorting with a stack, multiple passes

Problem (West, 1990)

How many permutations of length n can be sorted by at most two passes through a stack?

Sorting with a stack, multiple passes

Problem (West, 1990)

How many permutations of length n can be sorted by at most two passes through a stack?

- Consider 3142
- After one pass: 1324
- After two passes: 1234
- 3142 is 2 -stack-sortable

Sorting with a stack, multiple passes

Problem (West, 1990)

How many permutations of length n can be sorted by at most two passes through a stack?

- Consider 3142
- After one pass: 1324
- After two passes: 1234
- 3142 is 2-stack-sortable
- 2-stack-sortable permutations:
- Relatively simple description in terms of pattern avoidance
- Formula for their enumeration proved by (Zeilberger, 1992)

Sorting with a stack, multiple passes

Problem (West, 1990)

How many permutations of length n can be sorted by at most two passes through a stack?

- Consider 3142
- After one pass: 1324
- After two passes: 1234
- 3142 is 2-stack-sortable
- 2-stack-sortable permutations:
- Relatively simple description in terms of pattern avoidance
- Formula for their enumeration proved by (Zeilberger, 1992)
- 3-stack-sortable permutations:
- Complex description in terms of pattern avoidance (Ulfarsson, 2011)
- No enumeration results

Sorting with a stack, multiple passes

Problem (West, 1990)

How many permutations of length n can be sorted by at most two passes through a stack?

- Consider 3142
- After one pass: 1324
- After two passes: 1234
- 3142 is 2-stack-sortable
- 2-stack-sortable permutations:
- Relatively simple description in terms of pattern avoidance
- Formula for their enumeration proved by (Zeilberger, 1992)
- 3-stack-sortable permutations:
- Complex description in terms of pattern avoidance (Ulfarsson, 2011)
- No enumeration results
- k-stack-sortable permutations, $k>3$:
- Nothing is known

Pop-stacks

- Pop-stack: LIFO data structure with two operations:
- Push: Add an element to the top of the stack
- Pop: Remove all elements from the stack

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable
- pop-stack-sortable permutations:
- Simple description, and 2^{n-1} sortable permutations of length n (Avis and Newborn, 1981)

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable
- pop-stack-sortable permutations:
- Simple description, and 2^{n-1} sortable permutations of length n (Avis and Newborn, 1981)
- 2-pop-stack-sortable permutations:
- Complex description in terms of pattern avoidance, and formula is known (Pudwell and Smith, 2017)

Sorting with a pop-stack

Problem

How many permutations of length n can be sorted by at most k passes through a pop-stack?

- 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable
- pop-stack-sortable permutations:
- Simple description, and 2^{n-1} sortable permutations of length n (Avis and Newborn, 1981)
- 2-pop-stack-sortable permutations:
- Complex description in terms of pattern avoidance, and formula is known (Pudwell and Smith, 2017)
- k-pop-stack-sortable permutations, $k>2$:
- Open problem—let's try to count them!

Sorting traces

5	1	2	4	7	8	6	3	9

Sorting traces

$\begin{array}{lllllllll}5 & 1 & 2 & 4 & 7 & 8 & 6 & 3 & 9\end{array}$

Sorting traces

5	1	2	4	7	8	6	3	9

Sorting traces

Sorting traces

Sorting traces

5	1	2					
1	5	2	7	8	6	3	9

Sorting traces

Sorting traces

| 5 1 2 4 7 | 8 | 6 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sorting traces

5	1	2	4	7	8	6	3
1	5	2	4	7			

Sorting traces

5	1	2	4	7	8	6	3
1	5	2	4	7	3	6	8

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	

Sorting traces

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5						

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5						

Sorting traces

5			1	2	4	7	8	6
3	9							
1	5	2	4	7	3	6	8	9
1	2	5	4					

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4					

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4					

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7			

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7			

Sorting traces

5			1	2	4	7	8	6
3	9							
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6		

Sorting traces

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9

Sorting traces

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9

1

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1								

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2							

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2							

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2							

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5				

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5				

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5				

Sorting traces

| 5 | 1 | 2 | 4 | 7 | 8 | 6 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 2 | 4 | 7 | 3 | 6 | 8 | 9 |
| 1 | 2 | 5 | 4 | 3 | 7 | 6 | 8 | 9 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | |

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5	6	7		

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5	6	7	8	

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5	6	7	8	

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9
1	2	3	4	5	6	7	8	9

Sorting traces

5	1	2	4	7	8	6	3	9
1	5	2	4	7	3	6	8	9
1	2	5	4	3	7	6	8	9

- We call this a sorting trace of length 9 and order 3
- The numbers within each block must be in decreasing order
- Adjacent numbers in different blocks must form an ascent
- Each permutation must be the "blockwise reversal" of the permutation above
- The last permutation is the identity permutation

Sorting traces

- We call this a sorting trace of length 9 and order 3
- The numbers within each block must be in decreasing order
- Adjacent numbers in different blocks must form an ascent
- Each permutation must be the "blockwise reversal" of the permutation above
- The last permutation is the identity permutation
- Removing the numbers, the structure that remains we call a skeleton
- A trace of length n and order k has a skeleton with k rows
- Each row is an integer composition of n

Validity of skeletons

- Say we have a k-pop-stack-sortable permutation of length n. We can

1. generate its trace, and
2. drop the numbers from the trace.

This gives us a skeleton of length n and order k.

- What about the other direction?

Validity of skeletons

- Consider the following skeleton of length 9 and order 3:

Validity of skeletons

- Consider the following skeleton of length 9 and order 3:

- Assume there exists a trace that has this skeleton.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3:

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity

Validity of skeletons

- Consider the following skeleton of length 9 and order 3:

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity

Validity of skeletons

- Consider the following skeleton of length 9 and order 3:

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3:

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3 :

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3 :

3		2	4	6	7		1	8	9
5									
2	3	4	1	7	6	9	8	5	
2	1	4	3	7	6	5	8	9	
1	2	3	4	5	6	7	8	9	

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3 :

3		2	4	6	7	1	8	9	5
2	3	4	1	7	6	9	8	5	
2	1	4	3	7	6	5	8	9	
1	2	3	4	5	6	7	8	9	

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3 :

3		2	4	6	7	1	8	9	5
2	3	4	1	7	6	9	8	5	
2	1	4	3	7	6	5	8	9	
1	2	3	4	5	6	7	8	9	

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.

Validity of skeletons

- Consider the following skeleton of length 9 and order 3 :

3		2	4	6	7	1	8	9	5
2	3	4	1	7	6	9	8	5	
2	1	4	3	7	6	5	8	9	
1	2	3	4	5	6	7	8	9	

- Assume there exists a trace that has this skeleton. Then
- the last permutation must be the identity, and
- each permutation is the "blockwise reversal" of the permutation above.
- This is not a trace, so the skeleton is not valid!

Validity of skeletons

- A skeleton is valid if we get a proper sorting trace after filling in the numbers:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent

Bijection

- We have a bijection between k-pop-stack-sortable permutations of length n and valid skeletons of length n and order k

Valid skeletons

- To count the k-pop-stack-sortable permutations of length n we will count the valid skeletons of length n and order k
- How to determine if an arbitrary skeleton is valid?

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

- Recall the two conditions:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

- Recall the two conditions:
(1) The numbers within each block are in decreasing order-this will always be true!
(2) Adjacent numbers in different blocks form an ascent

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

- Recall the two conditions:
(1) The numbers within each block are in decreasing order-this will always be true!
(2) Adjacent numbers in different blocks form an ascent-this will always be true!

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

- Recall the two conditions:
(1) The numbers within each block are in decreasing order-this will always be true!
(2) Adjacent numbers in different blocks form an ascent-this will always be true!
- All skeletons of order 1 are valid!

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

- Recall the two conditions:
(1) The numbers within each block are in decreasing order-this will always be true!
(2) Adjacent numbers in different blocks form an ascent-this will always be true!
- All skeletons of order 1 are valid!
- There are 2^{n-1} skeletons of length n and order 1

Valid skeletons for $k=1$

- Consider the following skeleton of order 1 :

2	1	3	6	5	4	8	7	9
1	2	3	4	5	6	7	8	9

- Recall the two conditions:
(1) The numbers within each block are in decreasing order-this will always be true!
(2) Adjacent numbers in different blocks form an ascent-this will always be true!
- All skeletons of order 1 are valid!
- There are 2^{n-1} skeletons of length n and order 1
- Therefore 2^{n-1} pop-stack-sortable permutations of length n

Valid skeletons for $k=2$

- Consider an arbitrary valid skeleton of order 2
- Slice it up along the boundaries of the blocks in the second row

- Consider one of the resulting pieces, and let's do case analysis based on the size of the block in the second row

Valid skeletons for $k=2$

- Consider an arbitrary valid skeleton of order 2
- Slice it up along the boundaries of the blocks in the second row

- Consider one of the resulting pieces, and let's do case analysis based on the size of the block in the second row

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 2
- Then we have two numbers $a, b \in[n]$, with $b=a+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

a
c

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 3
- Then we have three numbers $a, b, c \in[n]$, with $b=a+1$ and $c=b+1$

Valid skeletons for $k=2$

- Say the lower block is of size 1
- Then we have a number $a \in[n]$

Valid skeletons for $k=2$

- Say the lower block is of size 1
- Then we have a number $a \in[n]$

Detour: Large blocks

- What about blocks of size 4 or larger?

Lemma

In any valid trace, of any order, blocks can only be of size 4 or greater in the first row

- Assume there is a block, not on the first row, with numbers $a_{1}, \ldots, a_{m}, m \geq 4$
- Valid trace: $a_{1}>a_{2}>\cdots>a_{m}$

Detour: Large blocks

- What about blocks of size 4 or larger?

Lemma

In any valid trace, of any order, blocks can only be of size 4 or greater in the first row

- Assume there is a block, not on the first row, with numbers $a_{1}, \ldots, a_{m}, m \geq 4$
- Valid trace: $a_{1}>a_{2}>\cdots>a_{m}$

Detour: Large blocks

- What about blocks of size 4 or larger?

Lemma

In any valid trace, of any order, blocks can only be of size 4 or greater in the first row

- Assume there is a block, not on the first row, with numbers $a_{1}, \ldots, a_{m}, m \geq 4$
- Valid trace: $a_{1}>a_{2}>\cdots>a_{m}$

Valid skeletons for $k=2$

- No pieces of size 4 or greater
- We have restricted the set of possible pieces to the following:

- These pieces are "necessary"

Valid skeletons for $k=2$

- No pieces of size 4 or greater
- We have restricted the set of possible pieces to the following:

- These pieces are "necessary"
- Turns out they are also "sufficient"!

Valid skeletons for $k=2$

- We can now count the valid skeletons. Building them incrementally from left to right, let
- C be the partial skeletons that end with closed right boundary, and
- H be the partial skeletons that end with half-closed right boundary.

Then

$$
\begin{aligned}
& C=\mid+C \boxminus+H(\square+\square) \\
& H=C(\square+\square)+H(\square+\square+\square)
\end{aligned}
$$

- Using the formal variable x to keep track of the length of the partial skeleton:

$$
\begin{aligned}
C & =1+x C+\left(x+x^{2}\right) H \\
H & =\left(x+x^{2}\right) C+\left(x+x^{2}+x^{3}\right) H
\end{aligned}
$$

- Solving for C gives:

$$
C=\left(x^{3}+x^{2}+x-1\right) /\left(2 x^{3}+x^{2}+2 x-1\right)
$$

Valid skeletons in general

- Let's now consider skeletons of some order k
- Recall the two conditions that determine if a skeleton is valid:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent

Valid skeletons in general

- Let's now consider skeletons of some order k
- Recall the two conditions that determine if a skeleton is valid:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent

Decreasing blocks

Decreasing blocks

Decreasing blocks

Decreasing blocks

Decreasing blocks

3	5	1	7	4	2	6	8
3	1	5	2	4	7	6	8
1	3	2	5	4	6	7	8
1	2	3	4	5	6	7	8

Decreasing blocks

5	3	7	1	4	2	8	6
3	5	1	7	4	2	6	8
3	1	5	2	4	7	6	8
1	3	2	5	4	6	7	8
1	2	3	4	5	6	7	8

Decreasing blocks

Decreasing blocks

Decreasing blocks

7	3	5	1	6		8	(4)	(4)
5	3	7		1	4	2	8	6
3	5	1	7	4	4	6	8	
3	1	5	2	4	7	6	8	
1	3	2	5	4	6	7	8	
1	2	3	4	5	6	7	8	

Decreasing blocks

7	3	5	1			(2) (4)		
5	3	7	1			8	6	
3	51		7 (4) 2			6	8	
3	$\begin{array}{l\|ll\|l} \hline 1 & 5 & (2) & 4 \\ \hline \end{array}$				$7 \quad 6$			
1	$\begin{array}{\|ll\|l\|} \hline 3 & \text { (2) } & 5 \\ \hline \end{array}$				6	7	8	
	(2) 3 (4) 5				6	7		

Decreasing blocks

7	3	5	1	6	8	2) (4)	
5	3	71				86	
3	$5 \quad 1$		7 (4) 2			6	8
3	$5 \text { (2) (4) }$				$7 \quad 6$		8
1	$3 \text { (2) } 5$				7		8
1			(4)	5	6		8

- They start in increasing order in the bottom permutation
- Every time they appear in a block together, their relative order changes
- In particular, they will be in increasing order the second time they appear together in a block

Decreasing blocks

7	3	5	1	6	8	2) (4)	
5	3	71				86	
3	$5 \quad 1$		7 (4) 2			6	8
3	$5 \text { (2) (4) }$				$7 \quad 6$		8
1	$3 \text { (2) } 5$				7		8
1			(4)	5	6		8

- They start in increasing order in the bottom permutation
- Every time they appear in a block together, their relative order changes
- In particular, they will be in increasing order the second time they appear together in a block-a violation of the condition!

Decreasing blocks

Lemma

A skeleton satisfies the first condition if and only if, for each pair of numbers a, b in the corresponding trace, the numbers a, b appear at most once together in a block.

- Can we check whether a skeleton satisfies this without looking at the corresponding trace?

Decreasing blocks

3			5	1	6	8	2	4
5	3	7	1	4	(2)	8	6	
3	5	1	7	4	2	6	8	
3	1	5	2	4	7	6	8	
1	3	2	5	4	6	7	8	
1	2	3	4	5	6	7	8	

Decreasing blocks

Decreasing blocks

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks

- Any skeleton of order 5 containing this fragment is invalid
- We call this a forbidden fragment

Decreasing blocks — Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:
1
2
3
4
5
6
7
8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1
2
3
4
5
6

7
8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1
2
3
4
5
6

7
8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1
2
3
4
5
6
7

8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1

2

3
4
5
6
7

8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1
2
3
4
5
6
7
8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1
2
3
4
5
6
7
8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

1
2
3
4
5
6
7
8

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks — Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks — Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks - Forbidden fragments

- We can list all the minimal forbidden fragments that cause two elements to appear at least twice together in a block:

Decreasing blocks — Forbidden fragments

- Special case: The second time the two numbers appear together in a block, they are in a large block on the first row

Decreasing blocks — Forbidden fragments

- Special case: The second time the two numbers appear together in a block, they are in a large block on the first row

Decreasing blocks — Forbidden fragments

- Special case: The second time the two numbers appear together in a block, they are in a large block on the first row

Decreasing blocks — Forbidden fragments

- Special case: The second time the two numbers appear together in a block, they are in a large block on the first row

Decreasing blocks — Forbidden fragments

- Special case: The second time the two numbers appear together in a block, they are in a large block on the first row

Decreasing blocks — Forbidden fragments

- Special case: The second time the two numbers appear together in a block, they are in a large block on the first row

Decreasing blocks - Forbidden fragments

- When generating these forbidden fragments for a fixed k :
- There are $k-1$ choices for the row where the numbers first occur together in a block
- There are 2 choices for the size of this block
- There are at most 2 choices for how they are placed inside this block
- Since each block is of size at most 3 , the distance the two numbers can travel away from this first block is bounded by $2 k$
- There are finitely many forbidden fragments for the first condition
- We can list all of them, and (somehow) remove the skeletons that contain at least one of them

Valid skeletons in general

- Recall the two conditions that determine if a skeleton is valid:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent

Valid skeletons in general

- Recall the two conditions that determine if a skeleton is valid:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent
- Now assume the skeletons satisfy the first condition

Valid skeletons in general

- Recall the two conditions that determine if a skeleton is valid:
(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent
- Now assume the skeletons satisfy the first condition

Ascent across boundary

- Let's take another look at the invalid skeleton from before:

Ascent across boundary

- Let's take another look at the invalid skeleton from before:

Ascent across boundary

- Let's take another look at the invalid skeleton from before:

Ascent across boundary

- Let's take another look at the invalid skeleton from before:

$\begin{array}{lll}7 & 3 & \text { (1) }\end{array}$	6 8 2 4			
(5) 3	4	2		6
3 (5) (1) 7	4	2	6	8
3 (1) (5) 2	4	7	6	8
$\begin{array}{\|c\|ll\|l} \hline(1) & 3 & 2 & 5 \\ \hline \end{array}$	4	6	7	
(1) 2303	(5)	6		

Ascent across boundary

- Let's take another look at the invalid skeleton from before:

Ascent across boundary

- Let's take another look at the invalid skeleton from before:

Ascent across boundary

Lemma

A skeleton satisfies the second condition if and only if, for each pair of numbers a, b in the corresponding trace, the numbers a, b are never adjacent, separated by a block boundary, and appearing an odd number of times together in a block on the rows below.

Ascent across boundary

Lemma

A skeleton satisfies the second condition if and only if, for each pair of numbers a, b in the corresponding trace, the numbers a, b are never adjacent, separated by a block boundary, and appearing together in a block on the rows below.

Ascent across boundary - Forbidden fragments

- We can generate the minimal forbidden fragments for the second condition in the same manner as for the first condition
- Again there will be finitely many of them

Forbidden fragments

- We now have a finite set of these forbidden fragments
- Finite fragments of a skeleton, that may contain block boundaries that are "wildcards"
- A skeleton is valid if and only if it avoids these forbidden fragments
- Can we use this characterization to enumerate the valid skeletons?

Formal language

- Let's encode skeletons as a formal language

Formal language

- Let's encode skeletons as a formal language

Formal language

- Let's encode skeletons as a formal language

Formal language

- Let's encode skeletons as a formal language

- The alphabet Σ consists of the 2^{k} possible columns in a skeleton
- Let S be the language that consists of skeletons:
- First and last columns are solid
- No block is of size greater than 3, except in the first row
- We can make a DFA that accepts S, so it is regular

Avoiding forbidden fragments

- We want the set of skeletons that avoid all the forbidden fragments
- For a given forbidden fragment, we can create a DFA that accepts the set of skeletons that contain that particular fragment
- Taking the complement of the DFA gives us the set of skeletons that avoid it
- Doing this for all the forbidden fragments, and then taking the intersection of all the resulting DFA, we get a DFA for the set of valid skeletons!

Generating function from DFA

- We want to count the valid skeletons of length n
- In terms of the language, the skeletons that have $n+1$ columns
- Want to count how many strings of length $n+1$ our DFA accepts
- A system of linear equations gives us the generating function
- accepted strings of length $n+1$
- valid skeletons of length n
- k-pop-stack-sortable permutations of length n

Rational generating function

- The generating function for the set of accepted strings of a DFA is rational

Theorem

For any fixed k, the generating function for the k-pop-stack-sortable permutations is rational.

Deriving the generating functions

- Theoretical result is nice, but can we actually derive the generating functions?
- Carrying out the calculations by hand is impractical
- Instead we implemented the whole procedure so that it could be carried out by a computer
- Used the Garpur cluster to crunch out the generating functions for $k \leq 6$

Results

k	1	2	3	4	5	6
Forbidden fragments	0	8	85	2451	686485	3581406
Vertices in DFA	2	4	11	31	99	339
Edges in DFA	4	10	33	119	477	2010
Degree of GF	1	3	10	25	71	213

Generating functions

k
1 Generating function

2
$\left(2 x^{10}+4 x^{9}+2 x^{8}+5 x^{7}+11 x^{6}+8 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+x-\right.$
3

$$
\begin{aligned}
& \text { 1) }\left(4 x^{10}+8 x^{9}+4 x^{8}+10 x^{7}+22 x^{6}+16 x^{5}+8 x^{4}+6 x^{3}+2 x^{2}+2 x-1\right) \\
& \quad\left(64 x^{25}+448 x^{24}+1184 x^{23}+1784 x^{22}+2028 x^{21}+1948 x^{20}+\right. \\
& 1080 x^{19}+104 x^{18}-180 x^{17}+540 x^{16}+1156 x^{15}+696 x^{14}+252 x^{13}+ \\
& 238 x^{12}+188 x^{11}+502 x^{10}+806 x^{9}+544 x^{8}+263 x^{7}+185 x^{6}+99 x^{5}+ \\
& \left.33 x^{4}+13 x^{3}+3 x^{2}+x-1\right) /\left(128 x^{25}+896 x^{24}+2368 x^{23}+3568 x^{22}+\right. \\
& 3928 x^{21}+3064 x^{20}+176 x^{19}-2304 x^{18}-2664 x^{17}-1580 x^{16}- \\
& 352 x^{15}-576 x^{14}-1104 x^{13}-760 x^{12}-138 x^{11}+686 x^{10}+1238 x^{9}+ \\
& \left.869 x^{8}+382 x^{7}+210 x^{6}+102 x^{5}+27 x^{4}+12 x^{3}+3 x^{2}+2 x-1\right)
\end{aligned}
$$

