Algorithmic Coincidence Classification of Mesh Patterns Permutation Patterns 2016

Bjarki Ágúst Guðmundsson Tómas Ken Magnússon Henning Ulfarsson

Reykjavík University, Iceland

June 2016

• For classical patterns p, p' it is natural to ask whether they are *Wilf-equivalent*, i.e., $|Av_n(p)| = |Av_n(p')|$ for all n

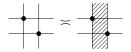
- For classical patterns p, p' it is natural to ask whether they are *Wilf-equivalent*, i.e., $|Av_n(p)| = |Av_n(p')|$ for all n
- If we have mesh patterns m, m' we can ask a more basic question: does $Av_n(m) = Av_n(m')$ for all n?

- For classical patterns p, p' it is natural to ask whether they are *Wilf-equivalent*, i.e., $|Av_n(p)| = |Av_n(p')|$ for all n
- If we have mesh patterns m, m' we can ask a more basic question: does $Av_n(m) = Av_n(m')$ for all n?
- When this occurs we say that m and m' are $\mathit{coincident},$ denoted $m \asymp m'$

- For classical patterns p, p' it is natural to ask whether they are *Wilf-equivalent*, i.e., $|Av_n(p)| = |Av_n(p')|$ for all n
- If we have mesh patterns m, m' we can ask a more basic question: does $Av_n(m) = Av_n(m')$ for all n?
- \bullet When this occurs we say that m and m' are coincident, denoted $m \asymp m'$
- \bullet Note that for classical patterns $p \asymp p'$ if and only if p = p'

• A permutation has an inversion if and only if it has a descent

- A permutation has an inversion if and only if it has a descent
- This is the coincidence



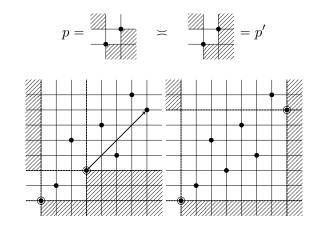
- A permutation has an inversion if and only if it has a descent
- This is the coincidence

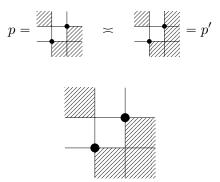


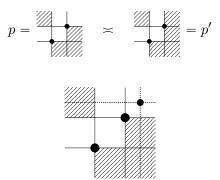
• Mesh patterns are not coincident if they have different underlying classical patterns

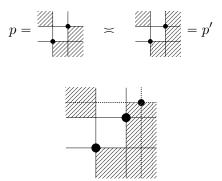
- The shading lemma [2], and the simultaneous shading lemma [1] give sufficient conditions that imply coincidence of patterns
- They are close to capturing all coincidences of mesh patterns of length $\leqslant 2$
- The idea behind the lemmas is swapping out points in an occurrence of a pattern, obtaining the objective pattern

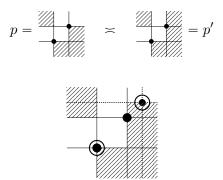
Shading lemma: Example

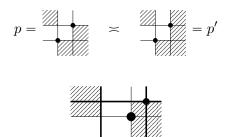


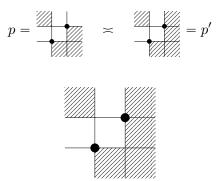






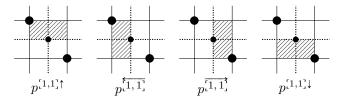






Formalization

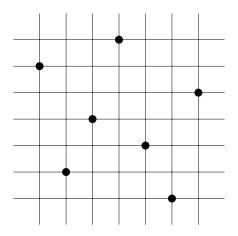
Let p = 21. The set $p^{[1,1]\star}$ consists of the mesh patterns:

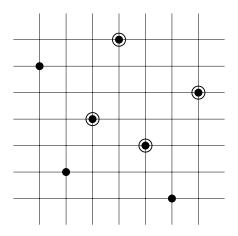


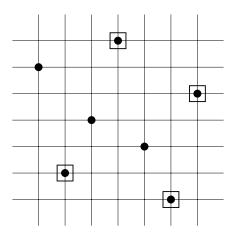
Lemma 2

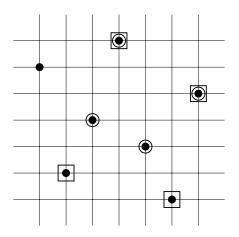
Let $p = (\tau, R)$ be a mesh pattern with $[i, j] \notin R$. If any mesh pattern in the set $p^{[i, j]} \star$ contains a non-trivial occurrence of p then $p \approx (\tau, R \cup \{[i, j]\})$.

The shading lemma follows from this lemma.

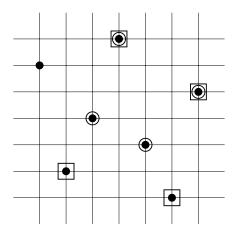








Comparing occurrences



Force F = ((4, N), (2, W), (1, W)). The second (boxed) occurrence is stronger w.r.t. F.

Lemma 5

Let $p = (\tau, R)$ be a mesh pattern with force F, and $p' = (\tau, R')$ be another mesh pattern. Let $S = \{s_1, s_2, \ldots, s_k\}$ where $S = R' \setminus R$. If all the sets

$$(\tau, R)^{s_1\star}, (\tau, R \cup \{s_1\})^{s_2\star}, \dots, (\tau, R \cup \{s_1, s_2, \dots, s_{k-1}\})^{s_k\star}$$

contain a non-trivial occurrence of p that is stronger than the trivial occurrence; or an occurrence of p', then containment of p implies containment of p'.

The simultaneous shading lemma follows from this lemma.

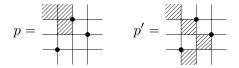
Pattern	SL	Lemma 2	SSL	Lemma 5
12	237	237	229	221
123	34626	34618	34154	33634
132	34213	34213	33985	33621

Table: The number of coincidence classes found by different lemmas

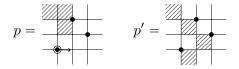
After fixing a force F, we can recursively apply a variant of the previous lemma to capture even more coincidences.

- Walk down a decision tree, branching on
 - box is empty,
 - box contains at least one point
- Leaves should give a contradiction, or an instance of the target pattern

$\bullet\,$ Prove that containment of p implies containment of p'

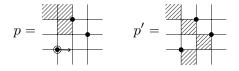


 $\bullet\,$ Prove that containment of p implies containment of p'

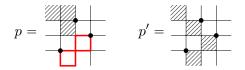


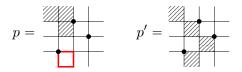
• Use force F = ((1, E))

 $\bullet\,$ Prove that containment of p implies containment of p'

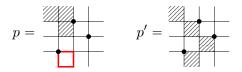


- Use force F = ((1, E))
- Consider a permutation π which contains p, and take the occurrence of p that has maximum strength w.r.t. F

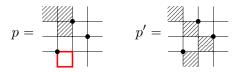




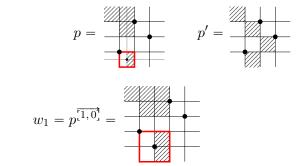
• Consider [1,0]

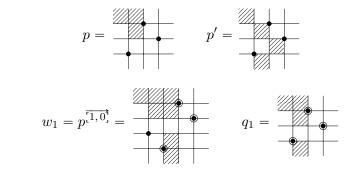


Consider [1,0]
If empty, we're done

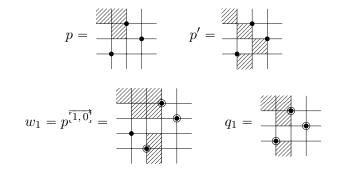


- Consider $\begin{bmatrix} 1, 0 \end{bmatrix}$
 - If empty, we're done
 - Otherwise, consider the rightmost point

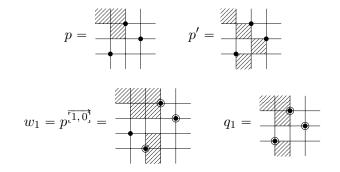




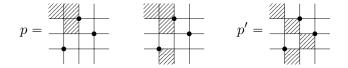
 $\bullet\,$ Consider subsequence at indices $234\,$

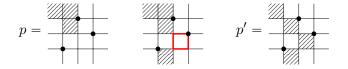


- $\bullet\,$ Consider subsequence at indices $234\,$
- q_1 is an occurrence of p that is stronger, a contradiction

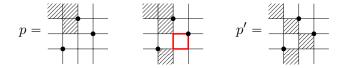


- $\bullet\,$ Consider subsequence at indices $234\,$
- q_1 is an occurrence of p that is stronger, a contradiction
- Can assume that [1,0] is empty

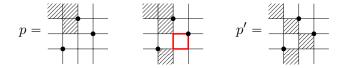




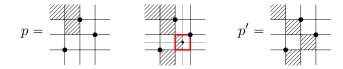
 \bullet Now consider $[\![2,1]\!]$

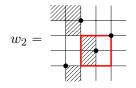


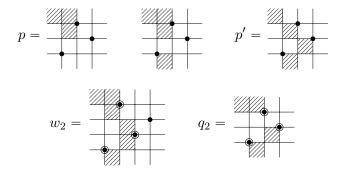
- Now consider [2,1]
 - If empty, we're done



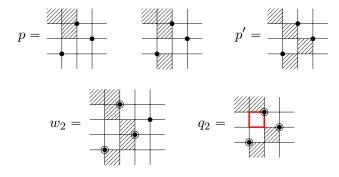
- \bullet Now consider [2,1]
 - If empty, we're done
 - Otherwise, consider the leftmost point



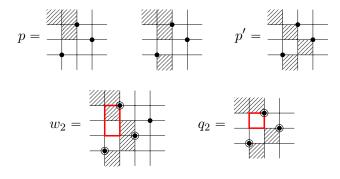




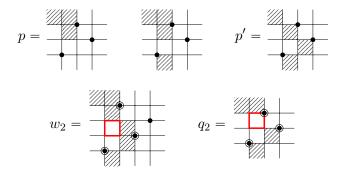
 $\bullet\,$ Consider subsequence at indices 123



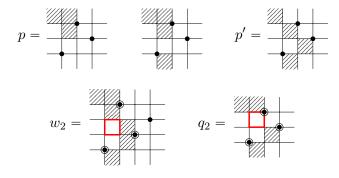
- $\bullet\,$ Consider subsequence at indices 123
- \bullet Looking at $q_2\text{, we're missing } \left[\!\!\left[1,2\right]\!\!\right]$



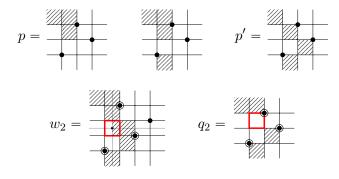
- Consider subsequence at indices 123
- Looking at q_2 , we're missing $\begin{bmatrix} 1,2 \end{bmatrix}$
- \bullet Corresponds to [1,2] and [1,3] in w_2



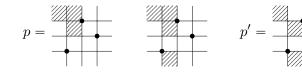
- Consider subsequence at indices 123
- \bullet Looking at $q_2\text{, we're missing [}1,2\text{]}$
- Corresponds to [1, 2] in w_2

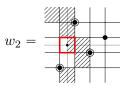


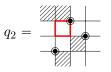
- $\bullet\,$ Consider subsequence at indices 123
- \bullet Looking at $q_2\text{, we're missing [}1,2\text{]}$
- \bullet Corresponds to $\llbracket 1,2 \rrbracket$ in w_2
 - If empty, we're done

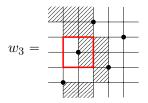


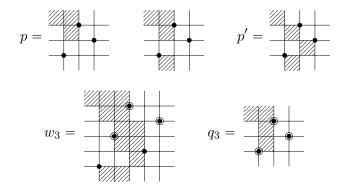
- $\bullet\,$ Consider subsequence at indices 123
- \bullet Looking at $q_2\text{, we're missing } \left[1,2\right]$
- Corresponds to [1, 2] in w_2
 - If empty, we're done
 - Otherwise, consider the rightmost point



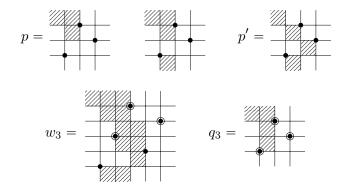




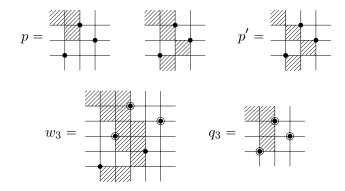




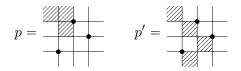
 $\bullet\,$ Consider subsequence at indices $235\,$



- $\bullet\,$ Consider subsequence at indices $235\,$
- q_3 is an occurrence of p that is stronger, a contradiction



- $\bullet\,$ Consider subsequence at indices $235\,$
- q_3 is an occurrence of p that is stronger, a contradiction
- $\bullet\,$ Can assume that [2,1] is empty as well



- We've proved that the occurrence with maximum strength w.r.t. F has no points in $[1,0],\,[2,1]$
- $\bullet\,$ Hence this is an occurrence of p' as well

We have formalized this into an algorithm (see abstract) and implemented it in Python. It is available on GitHub:

http://tinyurl.com/shadingalgorithm

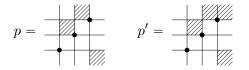
- Currently not very user friendly
- $\bullet\,$ Exhaustively search for proofs that recurse no more than $d\,$ steps
- Has some optimizations, like deriving a force retroactively

Let d denote the maximum recursion depth used in the proof.

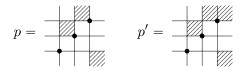
Pattern	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7
123	33634	33602	33548	33540	33538	33536	?
132	33621	33459	33412	33395	33394	33394	33390

Table: The number of coincidence classes found by different depths

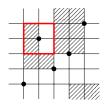
After dealing with a handful of special cases we show that the number of coincidence classes for the patterns in Table 2 are 33516 and 33350, respectively.

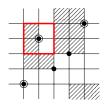


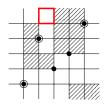
• Let force F = ((1, S), (2, W), (3, W))

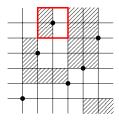


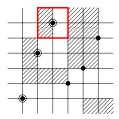
• Let force F = ((1, S), (2, W), (3, W))

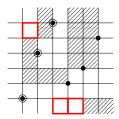


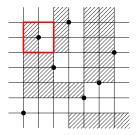


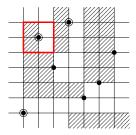


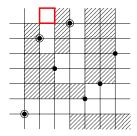


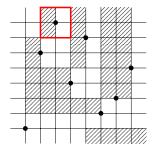


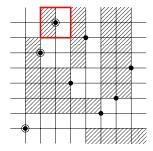


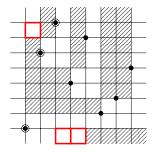


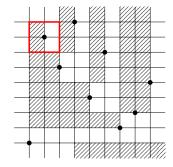


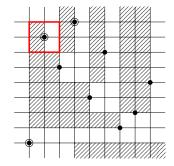


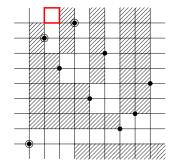


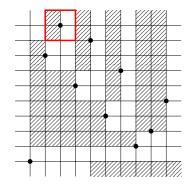




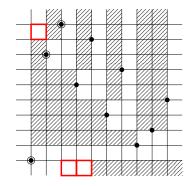


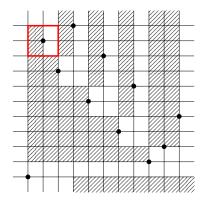


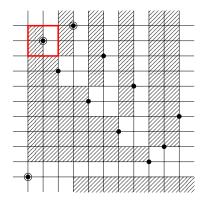


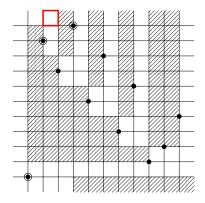


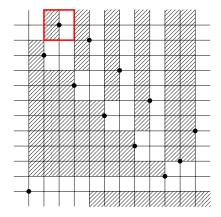


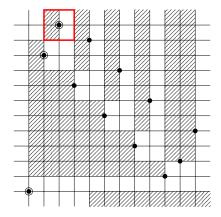


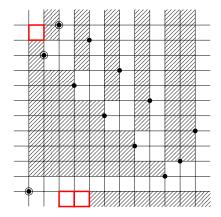


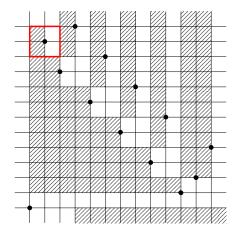


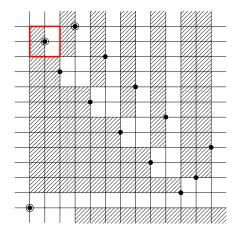


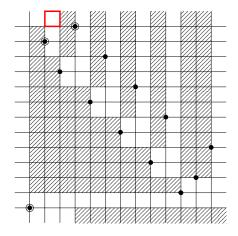


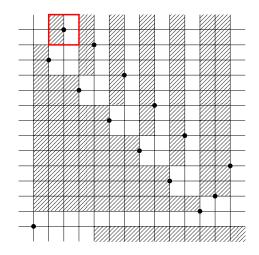


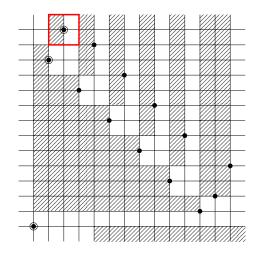


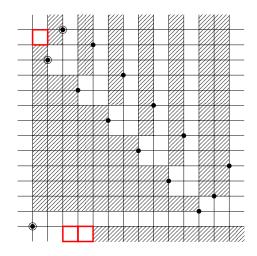


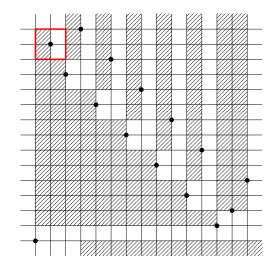


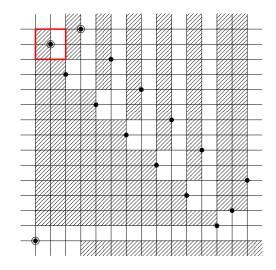


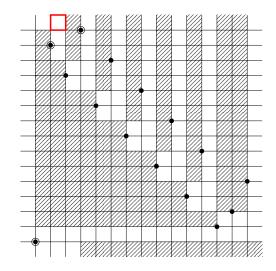


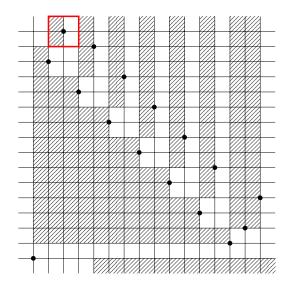


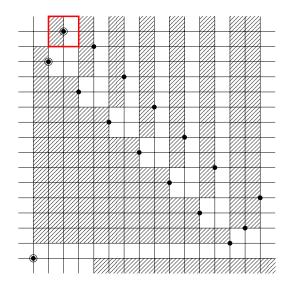


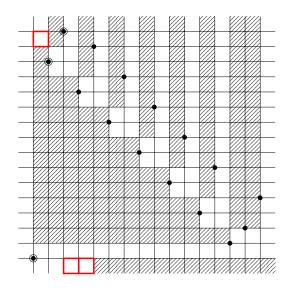












For a finite permutation, this process will eventually exhaust all points. When that happens, we must have found a new occurrence that is stronger w.r.t. F, a contradiction.

- Find a way to handle "infinite" cases neatly
- Support more complex conditions than just a point in a box, e.g.
 - point in either of two boxes,
 - inversion across two consecutive boxes
- Use unidirectional containment to prove coincidences
- Classify length 4 patterns

Thanks for listening!

Claesson, Tenner, and Ulfarsson. Coincidence among families of mesh patterns. *Australas. J. Combin.*, 2015.

 Hilmarsson, Jónsdóttir, Sigurðardóttir, Viðarsdóttir, and Ulfarsson.
 Wilf-classification of mesh patterns of short length.
 Electron. J. Combin, 2015.