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= Permutation of length n: ordering of {1,2,...,n}

= 1234
= 1324
= 4321

= [dentity permutation: the increasing permutation
= 123456



= Stack: LIFO data structure with two operations:

= Push: Add an element to the top of the stack
= Pop: Remove the top-most element from the stack



Sorting with a stack

Problem (Knuth, 1968)
How many permutations of length n can be sorted by a single pass
through a stack?
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Sorting with a stack

Problem (Knuth, 1968)
How many permutations of length n can be sorted by a single pass
through a stack?

1324

» 3124 is stack-sortable, 3142 is not
= Greedy algorithm
= Keep the stack in increasing order
= Push when possible
= Pop when necessary
= Stack-sortable permutations:
= Simple description in terms of pattern avoidance
= Enumerated by the Catalan numbers C',
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Sorting with a stack, multiple passes

Problem (West, 1990)
How many permutations of length n can be sorted by at most two
passes through a stack?

= Consider 3142
= After one pass: 1324
= After two passes: 1234
= 3142 is 2-stack-sortable
= 2-stack-sortable permutations:
= Relatively simple description in terms of pattern avoidance
= Formula for their enumeration proved by (Zeilberger, 1992)
= 3-stack-sortable permutations:
= Complex description in terms of pattern avoidance (Ulfarsson, 2011)
= No enumeration results
= k-stack-sortable permutations, k£ > 3:
= Nothing is known



= Pop-stack: LIFO data structure with two operations:

= Push: Add an element to the top of the stack
= Pop: Remove all elements from the stack



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

3124



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

124

S



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

24

3



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

13 24

2



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

13 4

:



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

132 4

o



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

132

;



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1324



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1324

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1324

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

324

1

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1 324

—

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1 24

S

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1 4
2
8

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

123 4

i

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

123

;

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1234

= 3124 is not pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1234

= 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1234

= 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable
= pop-stack-sortable permutations:
= Simple description, and 2! sortable permutations of length n
(Avis and Newborn, 1981)



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1234

= 3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable
= pop-stack-sortable permutations:
= Simple description, and 2"~ ! sortable permutations of length n
(Avis and Newborn, 1981)
= 2-pop-stack-sortable permutations:
= Complex description in terms of pattern avoidance, and formula is
known (Pudwell and Smith, 2017)



Sorting with a pop-stack

Problem
How many permutations of length n can be sorted by at most k passes
through a pop-stack?

1234

3124 is not pop-stack-sortable, but it is 2-pop-stack-sortable
= pop-stack-sortable permutations:
= Simple description, and 2"~ ! sortable permutations of length n
(Avis and Newborn, 1981)
= 2-pop-stack-sortable permutations:
= Complex description in terms of pattern avoidance, and formula is
known (Pudwell and Smith, 2017)
= k-pop-stack-sortable permutations, k& > 2:
= Open problem—Iet's try to count them!
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Sorting traces

1 2 3 4 5 6 7 8 9

= We call this a sorting trace of length 9 and order 3
= The numbers within each block must be in decreasing order
= Adjacent numbers in different blocks must form an ascent
= Each permutation must be the “blockwise reversal” of the
permutation above
= The last permutation is the identity permutation



Sorting traces

= We call this a sorting trace of length 9 and order 3
= The numbers within each block must be in decreasing order
= Adjacent numbers in different blocks must form an ascent
= Each permutation must be the “blockwise reversal” of the
permutation above
= The last permutation is the identity permutation
= Removing the numbers, the structure that remains we call a skeleton

= A trace of length n and order k has a skeleton with k& rows
= Each row is an integer composition of n 7



Validity of skeletons

= Say we have a k-pop-stack-sortable permutation of length n. We
can

1. generate its trace, and
2. drop the numbers from the trace.

This gives us a skeleton of length n and order k.

= What about the other direction?
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Validity of skeletons

= Consider the following skeleton of length 9 and order 3:

= Assume there exists a trace that has this skeleton. Then
= the last permutation must be the identity, and
= each permutation is the “blockwise reversal” of the permutation

above.

= This is not a trace, so the skeleton is not valid!



Validity of skeletons

= A skeleton is valid if we get a proper sorting trace after filling in the
numbers:

(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent

10



k-pop-stack-sortable permutation]

‘\I

sort using pop-stack take topmost

I\’ permutation

drop numbers append identity,

I\> blockwise reversals

valid skeleton

= We have a bijection between k-pop-stack-sortable permutations of
length n and valid skeletons of length n and order k

11



Valid skeletons

= To count the k-pop-stack-sortable permutations of length n we will
count the valid skeletons of length n and order k

= How to determine if an arbitrary skeleton is valid?

12
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Valid skeletons for £ = 1

= Consider the following skeleton of order 1:

Recall the two conditions:

(1) The numbers within each block are in decreasing order—this will
always be true!

(2) Adjacent numbers in different blocks form an ascent—this will
always be true!

All skeletons of order 1 are valid!

= There are 27! skeletons of length 7 and order 1

= Therefore 2"~ pop-stack-sortable permutations of length n

13



Valid skeletons for £ = 2

= Consider an arbitrary valid skeleton of order 2

= Slice it up along the boundaries of the blocks in the second row

= Consider one of the resulting pieces, and let's do case analysis based
on the size of the block in the second row
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Valid skeletons for £ = 2
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= Then we have two numbers a,b € [n], with b =a +1
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Valid skeletons for £ = 2

= Say the lower block is of size 1
= Then we have a number a € [n]
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Valid skeletons for £ = 2

= Say the lower block is of size 1
= Then we have a number a € [n]

17



Detour: Large blocks

= What about blocks of size 4 or larger?

Lemma

In any valid trace, of any order, blocks can only be of size 4 or greater
in the first row

= Assume there is a block, not on the first row, with numbers
Qpyeeny @y, M >4

y'm

= Valid trace: a; > ay > - >a

m

al a2 a3 i a
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Lemma

In any valid trace, of any order, blocks can only be of size 4 or greater
in the first row

= Assume there is a block, not on the first row, with numbers
Qpyeeny @y, M >4

y'm

= Valid trace: a; > ay > - >a
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al a2 a3 i a

18



Valid skeletons for £ = 2

= No pieces of size 4 or greater
= We have restricted the set of possible pieces to the following:

= These pieces are “necessary”

19



Valid skeletons for £ = 2

= No pieces of size 4 or greater
= We have restricted the set of possible pieces to the following:

= These pieces are “necessary”
= Turns out they are also “sufficient”! 1



Valid skeletons for £ = 2

= We can now count the valid skeletons. Building them incrementally
from left to right, let

= (' be the partial skeletons that end with closed right boundary, and

= H be the partial skeletons that end with half-closed right boundary.

Then
C

|+cg+H#(d+d)
c(B+BE) +H#(o+ o+ D)

= Using the formal variable x to keep track of the length of the partial

H

skeleton:
C=1+2C+(z+2*)H

H=(z+23)C+(z+2%+z3)H
= Solving for C gives:
C=(@+22+z-1)/2x3+22+2x-1)

20



Valid skeletons in general

= Let's now consider skeletons of some order k
= Recall the two conditions that determine if a skeleton is valid:

(1) The numbers within each block are in decreasing order
(2) Adjacent numbers in different blocks form an ascent
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Decreasing blocks

7 3 5|1[6 8 OQ@
5371@286
305 1|7 Q|63
3 1|5 @O@|7 6]s
13 &5 Ole]7]s
1 @& 3@ 5 6 7 8

= They start in increasing order in the bottom permutation

= Every time they appear in a block together, their relative order
changes

= In particular, they will be in increasing order the second time they
appear together in a block
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Decreasing blocks

7 3 5|1[6 8 OQ@
5371@286
305 1|7 Q|63
3 1|5 @O@|7 6]s
13 &5 Ole]7]s
1 @& 3@ 5 6 7 8

= They start in increasing order in the bottom permutation

= Every time they appear in a block together, their relative order
changes

= In particular, they will be in increasing order the second time they
appear together in a block—a violation of the condition!
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Decreasing blocks

Lemma

A skeleton satisfies the first condition if and only if, for each pair of
numbers a, b in the corresponding trace, the numbers a, b appear at
most once together in a block.

= Can we check whether a skeleton satisfies this without looking at
the corresponding trace?

23
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Decreasing blocks

= Any skeleton of order 5 containing this fragment is invalid

= We call this a forbidden fragment
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= Any skeleton of order 5 containing this fragment is invalid

= We call this a forbidden fragment
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Decreasing blocks — Forbidden fragments
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Decreasing blocks — Forbidden fragments

= Special case: The second time the two numbers appear together in a
block, they are in a large block on the first row

26



Decreasing blocks — Forbidden fragments

= Special case: The second time the two numbers appear together in a
block, they are in a large block on the first row

1

2

3 b a

4 b a
5 b a
6 b a

7 a|b

8 a b

26



Decreasing blocks — Forbidden fragments

= Special case: The second time the two numbers appear together in a

block, they are in a large block on the first row

o N o O b~ w N

a
a
a

a

b

26



Decreasing blocks — Forbidden fragments

= Special case: The second time the two numbers appear together in a
block, they are in a large block on the first row

1

2 b a

3 b a

4 b a
5 b a
6 b a

7 a|b

8 a b

26



Decreasing blocks — Forbidden fragments

= Special case: The second time the two numbers appear together in a
block, they are in a large block on the first row

1

2 b a

3 b a

4 b a
5 b a
6 b a

7 a|b

8 a b

26



Decreasing blocks — Forbidden fragments

= Special case: The second time the two numbers appear together in a
block, they are in a large block on the first row
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Decreasing blocks — Forbidden fragments

= When generating these forbidden fragments for a fixed k:
= There are k — 1 choices for the row where the numbers first occur
together in a block
= There are 2 choices for the size of this block
= There are at most 2 choices for how they are placed inside this block
= Since each block is of size at most 3, the distance the two numbers
can travel away from this first block is bounded by 2k

= There are finitely many forbidden fragments for the first condition

= We can list all of them, and (somehow) remove the skeletons that
contain at least one of them

27



Valid skeletons in general

= Recall the two conditions that determine if a skeleton is valid:

(1) The numbers within each block are in decreasing order

(2) Adjacent numbers in different blocks form an ascent
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Ascent across boundary

= Let's take another look at the invalid skeleton from before:

Wl W] ot | 3
Nl Wl o] W] w
Wl N Ot =
AN I U I N N |
(G200 IS BN SN N =2
(=200 B TN BN B B NORN B NI B0 o)
N | | S| S| 00| N
| ||| O] =
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Ascent across boundary

= Let's take another look at the invalid skeleton from before:

7 3 ®O®|6 8 2 4
5L 3|7 M|4f2]8 6
3 D7 4 2|68
3 (R 2|47 638
|3 2|[® 46|78
O 2 3 40 6 7 8
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Ascent across boundary

Lemma

A skeleton satisfies the second condition if and only if, for each pair of
numbers a, b in the corresponding trace, the numbers a, b are never
adjacent, separated by a block boundary, and appearing an odd number
of times together in a block on the rows below.
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Ascent across boundary

Lemma

A skeleton satisfies the second condition if and only if, for each pair of
numbers a, b in the corresponding trace, the numbers a, b are never
adjacent, separated by a block boundary, and appearing together in a
block on the rows below.
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Ascent across boundary — Forbidden fragments

= We can generate the minimal forbidden fragments for the second
condition in the same manner as for the first condition

= Again there will be finitely many of them
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Forbidden fragments

= We now have a finite set of these forbidden fragments

= Finite fragments of a skeleton, that may contain block boundaries
that are “wildcards”

= A skeleton is valid if and only if it avoids these forbidden fragments

= Can we use this characterization to enumerate the valid skeletons?

32



Formal language

= Let's encode skeletons as a formal language
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Formal language

= Let's encode skeletons as a formal language

Q; Oy Q3 Q4 Q5 Qg Q7 Qg O

= The alphabet ¥ consists of the 2¥ possible columns in a skeleton
= Let S be the language that consists of skeletons:

= First and last columns are solid

= No block is of size greater than 3, except in the first row

= We can make a DFA that accepts S, so it is regular
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Avoiding forbidden fragments

= We want the set of skeletons that avoid all the forbidden fragments

= For a given forbidden fragment, we can create a DFA that accepts
the set of skeletons that contain that particular fragment

= Taking the complement of the DFA gives us the set of skeletons that
avoid it
= Doing this for all the forbidden fragments, and then taking the

intersection of all the resulting DFA, we get a DFA for the set of
valid skeletons!
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Generating function from DFA

= We want to count the valid skeletons of length n

= In terms of the language, the skeletons that have n + 1 columns

= Want to count how many strings of length n + 1 our DFA accepts
= A system of linear equations gives us the generating function

= accepted strings of length n + 1
= valid skeletons of length n
= k-pop-stack-sortable permutations of length n
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Rational generating function

= The generating function for the set of accepted strings of a DFA is
rational

Theorem
For any fixed k, the generating function for the k-pop-stack-sortable
permutations is rational.
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Deriving the generating functions

= Theoretical result is nice, but can we actually derive the generating
functions?

= Carrying out the calculations by hand is impractical

= |nstead we implemented the whole procedure so that it could be
carried out by a computer

= Used the Garpur cluster to crunch out the generating functions for
k<6
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k|1 2 3 4 5 6

Forbidden fragments | 0 8 85 2451 686485 3581406
Vertices in DFA | 2 4 11 31 99 339
Edgesin DFA | 4 10 33 119 477 2010
Degree of GF | 1 3 10 25 71 213
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Generating functions

k Generating function
1 (z—1)/(2z—1)
9 (®+22+2—1)/223 + 22+ 22— 1)

(2210 + 42° + 228 + 527 + 112° + 82 + 6% + 623 + 222 + x —
3 1)/(4x° +82° 4+ 428 + 1027 + 2225 + 162° 4 82* + 623 4 222 + 22 — 1)

(64225 + 4487%% + 1184223 + 1784222 + 2028221 + 1948220 +
1080219 + 10428 — 18027 + 540216 + 115621 + 696214 + 252213 +
238712 + 188z + 502210 + 8062 + 54428 + 26327 + 1852° + 9925 +
332% + 1323 + 322 + 2 — 1)/(128225 4 896224 4 2368223 + 3568222 +

3928221 + 3064220 + 1762 — 2304z — 26647 — 1580216 —
352z1% — 576214 — 1104213 — 76022 — 13821 + 686210 + 1238z° +
869z8 + 38227 + 21025 + 1022° + 272* + 1223 + 322 + 2z — 1)

o~
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