
Data structures and libraries

Bjarki Ágúst Guðmundsson
Tómas Ken Magnússon

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

http://ru.is/td
http://ru.is

Today we’re going to cover

▶ Basic data types
▶ Big integers
▶ Why we need data structures
▶ Data structures you already know
▶ Sorting and searching
▶ Using bitmasks to represent sets
▶ Common applications of the data structures
▶ Augmenting binary search trees
▶ Representing graphs

2

Basic data types

▶ You should all be familiar with the basic data types:
– bool: a boolean (true/false)
– char: an 8-bit signed integer (often used to represent

characters with ASCII)
– short: a 16-bit signed integer
– int: a 32-bit signed integer
– long long: a 64-bit signed integer
– float: a 32-bit floating-point number
– double: a 64-bit floating-point number
– long double: a 128-bit floating-point number

– string: a string of characters

3

Basic data types
Type Bytes Min value Max value
bool 1
char 1 -128 127
short 2 -32768 32767
int 4 -2148364748 2147483647
long long 8 -9223372036854775808 9223372036854775807

n −28n−1 28n−1 − 1

Type Bytes Min value Max value
unsigned char 1 0 255
unsigned short 2 0 65535
unsigned int 4 0 4294967295
unsigned long long 8 0 18446744073709551615

n 0 28n − 1

Type Bytes Min value Max value Precision
float 4 ≈ −3.4× 10−38 ≈ 3.4× 10−38 ≈ 7 digits
double 8 ≈ −1.7× 10−308 ≈ 1.7× 10−308 ≈ 14 digits

4

Big integers
▶ What if we need to represent and do computations
with very large integers, i.e. something that doesn’t fit
in a long long

▶ Simple idea: Store the integer as a string
▶ But how do we perform arithmetic on a pair of strings?
▶ We can use the same algorithms as we learned in
elementary school

– Addition: Add digit-by-digit, and maintain the carry
– Subtraction: Similar to addition
– Multiplication: Long multiplication
– Division: Long division
– Modulo: Long division

5

Example problem: Integer Inquiry
▶ http://uva.onlinejudge.org/external/4/424.html

6

Why do we need data structures?

▶ Sometimes our data needs to be organized in a way
that allows one or more of

– Efficient querying
– Efficient inserting
– Efficient deleting
– Efficient updating

▶ Sometimes we need a better way to represent our
data

– How do we represent large integers?
– How do we represent graphs?

▶ Data structures help us achieve those things

7

Data structures you’ve seen before
▶ Static arrays

- int arr[10]

▶ Dynamic arrays

- vector<int>

▶ Linked lists

- list<int>

▶ Stacks

- stack<int>

▶ Queues

- queue<int>

▶ Priority Queues

- priority_queue<int>

▶ Sets

- set<int>

▶ Maps

- map<int, int>

▶ Usually it’s best to use the standard library
implementations

– Almost surely bug-free and fast
– We don’t need to write any code

▶ Sometimes we need our own implementation
– When we want more flexibility
– When we want to customize the data structure

8

Data structures you’ve seen before
▶ Static arrays - int arr[10]
▶ Dynamic arrays - vector<int>
▶ Linked lists - list<int>
▶ Stacks - stack<int>
▶ Queues - queue<int>
▶ Priority Queues - priority_queue<int>
▶ Sets - set<int>
▶ Maps - map<int, int>

▶ Usually it’s best to use the standard library
implementations

– Almost surely bug-free and fast
– We don’t need to write any code

▶ Sometimes we need our own implementation
– When we want more flexibility
– When we want to customize the data structure

8

Data structures you’ve seen before
▶ Static arrays - int arr[10]
▶ Dynamic arrays - vector<int>
▶ Linked lists - list<int>
▶ Stacks - stack<int>
▶ Queues - queue<int>
▶ Priority Queues - priority_queue<int>
▶ Sets - set<int>
▶ Maps - map<int, int>

▶ Usually it’s best to use the standard library
implementations

– Almost surely bug-free and fast
– We don’t need to write any code

▶ Sometimes we need our own implementation
– When we want more flexibility
– When we want to customize the data structure

8

Sorting and searching

▶ Very common operations:
– Sorting an array

- sort(arr.begin(), arr.end())

– Searching an unsorted array

- find(arr.begin(), arr.end(), x)

– Searching a sorted array

- lower_bound(arr.begin(),
arr.end(), x)

▶ Again, usually in the standard library
▶ We’ll need different versions of binary search later
which need custom code, but lower_bound is enough
for now

9

Sorting and searching

▶ Very common operations:
– Sorting an array - sort(arr.begin(), arr.end())
– Searching an unsorted array - find(arr.begin(), arr.end(), x)
– Searching a sorted array - lower_bound(arr.begin(),

arr.end(), x)

▶ Again, usually in the standard library
▶ We’ll need different versions of binary search later
which need custom code, but lower_bound is enough
for now

9

Representing sets

▶ We have a small (n ≤ 30) number of items
▶ We label them with integers in the range 0, 1, . . . , n− 1

▶ We can represent sets of these items as a 32-bit
integer

▶ The ith item is in the set represented by the integer x
if the ith bit in x is 1

▶ Example:
– We have the set {0, 3, 4}
– int x = (1<<0) | (1<<3) | (1<<4);

10

Representing sets
▶ Empty set:

0
▶ Single element set:

1<<i
▶ The universe set (i.e. all elements):

(1<<n)-1
▶ Union of sets:

x|y
▶ Intersection of sets:

x&y
▶ Complement of a set:

~x & ((1<<n)-1)

11

Representing sets

▶ Check if an element is in the set:
if (x & (1<<i)) {

// yes
} else {

// no
}

12

Representing sets

▶ Why do this instead of using set<int>?
▶ Very lightweight representation
▶ All subsets of the n elements can be represented by
integers in the range 0 . . . 2n − 1

▶ Allows for easily iterating through all subsets (we’ll
see this later)

▶ Allows for easily using a set as an index of an array
(we’ll see this later)

13

Applications of Arrays and Linked Lists

▶ Too many to list
▶ Most problems require storing data, usually in an
array

14

Example problem: Broken Keyboard
▶ http://uva.onlinejudge.org/external/119/11988.html

15

Applications of Stacks
▶ Processing events in a first-in first-out order
▶ Simulating recursion
▶ Depth-first search in a graph
▶ Reverse a sequence
▶ Matching brackets
▶ And a lot more

16

Applications of Queues
▶ Processing events in a first-in first-out order
▶ Breadth-first search in a graph
▶ And a lot more

17

Applications of Priority Queues
▶ Processing events in order of priority
▶ Finding a shortest path in a graph
▶ Some greedy algorithms
▶ And a lot more

18

Applications of Sets
▶ Keep track of distinct items
▶ Have we seen an item before?
▶ If implemented as a binary search tree:

– Find the successor of an element (the smallest element
that is greater than the given element)

– Count how many elements are less than a given element
– Count how many elements are between two given

elements
– Find the kth largest element

▶ And a lot more

19

Applications of Maps
▶ Associating a value with a key
▶ As a frequency table
▶ As a memory when we’re doing Dynamic
Programming (later)

▶ And a lot more

20

Augmenting Data Structures
▶ Sometimes we can store extra information in our data
structures to gain more functionality

▶ Usually we can’t do this to data structures in the
standard library

▶ Need our own implementation that we can customize
▶ Example: Augmenting binary search trees

21

Augmenting Binary Search Trees

▶ We have a binary
search tree and want
to efficiently:

– Count number of
elements < x

– Find the kth smallest
element

▶ Naive method is to go
through all vertices,
but that is slow: O(n)

33

15

10

5

20

18

47

38

36

34 37

39

51

49

22

Augmenting Binary Search Trees

▶ Idea: In each vertex
store the size of the
subtree

▶ This information can
be maintained when
we insert/delete
elements without
adding time
complexity

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

23

Augmenting Binary Search Trees
▶ Count number of
elements < 38

– Search for 38 in the
tree

– Count the vertices
that we pass by that
are less than x

– When we are at a
vertex where we
should go right, get
the size of the left
subtree and add it to
our count

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

24

Augmenting Binary Search Trees
▶ Count number of
elements < 38

– Search for 38 in the
tree

– Count the vertices
that we pass by that
are less than x

– When we are at a
vertex where we
should go right, get
the size of the left
subtree and add it to
our count

▶ Time complexity
O(logn)

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

25

Augmenting Binary Search Trees
▶ Find kth smallest
element

– We’re on a vertex
whose left subtree is
of size m

– If k = m+ 1, we
found it

– If k ≤ m, look for the
kth smallest element
in the left subtree

– If k > m+ 1, look for
the k−m− 1st
smallest element in
the right subtree

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

26

Augmenting Binary Search Trees
▶ Find kth smallest
element

– We’re on a vertex
whose left subtree is
of size m

– If k = m+ 1, we
found it

– If k ≤ m, look for the
kth smallest element
in the left subtree

– If k > m+ 1, look for
the m− k− 1st
smallest element in
the right subtree

▶ Example: k = 11

33, 14

15, 5

10, 2

5, 1

20, 2

18, 1

47, 8

38, 5

36, 3

34, 1 37, 1

39, 1

51, 2

49, 1

27

Representing graphs

▶ There are many types of graphs:
– Directed vs. undirected
– Weighted vs. unweighted
– Simple vs. non-simple

▶ Many ways to represent graphs
▶ Some special graphs (like trees) have special
representations

▶ Most commonly used (general) representations:
1. Adjacency list
2. Adjacency matrix
3. Edge list

28

Adjacency list

0: 1, 2
1: 0, 2
2: 0, 1, 3
3: 2

vector<int> adj[4];
adj[0].push_back(1);
adj[0].push_back(2);
adj[1].push_back(0);
adj[1].push_back(2);
adj[2].push_back(0);
adj[2].push_back(1);
adj[2].push_back(2);
adj[3].push_back(2);

0

1 2

3

29

Adjacency matrix

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

bool adj[4][4];
adj[0][1] = true;
adj[0][2] = true;
adj[1][0] = true;
adj[1][2] = true;
adj[2][0] = true;
adj[2][1] = true;
adj[2][3] = true;
adj[3][2] = true;

0

1 2

3

30

Edge list

0, 1
0, 2
1, 2
2, 3

vector<pair<int, int> > edges;
edges.push_back(make_pair(0, 1));
edges.push_back(make_pair(0, 2));
edges.push_back(make_pair(1, 2));
edges.push_back(make_pair(2, 3));

0

1 2

3

31

Efficiency

Adjacency list Adjacency matrix Edge list
Storage O(|V|+ |E|) O(|V|2) O(|E|)
Add vertex O(1) O(|V|2) O(1)
Add edge O(1) O(1) O(1)
Remove vertex O(|E|) O(|V|2) O(|E|)
Remove edge O(|E|) O(1) O(|E|)
Query: are u, v adjacent? O(|V|) O(1) O(|E|)

▶ Different representations are good for different
situations

32

Example problem: Easy Problem from Rujia
Liu?

▶ http://uva.onlinejudge.org/external/119/11991.html

33

