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Today we’re going to cover

▶ Geometry
▶ Computational geometry
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Points and vectors

(3, 6)

(6, 3)

(1, 3)

▶ Points are represented
by a pair of numbers,
(x, y).

▶ Vectors are represented
in the same way.

▶ Thinking of points as
vectors us to do many
things.

3



Points and vectors

(3, 6)

(6, 3)

(1, 3)

▶ Points are represented
by a pair of numbers,
(x, y).

▶ Vectors are represented
in the same way.

▶ Thinking of points as
vectors us to do many
things.

3



Points and vectors

(3, 6)

(6, 3)

(1, 3)

▶ Points are represented
by a pair of numbers,
(x, y).

▶ Vectors are represented
in the same way.

▶ Thinking of points as
vectors us to do many
things.

3



Points and vectors

u⃗
v⃗

u⃗+ v⃗

u⃗− v⃗

▶ Simplest operation,
addition is defined as(
x0
y0

)
+

(
x1
y1

)
=

(
x0 + x1
y0 + y1

)

▶ Subtraction is defined in
the same manner(
x0
y0

)
−
(
x1
y1

)
=

(
x0 − x1
y0 − y1

)
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Points and vectors
struct point {

double x, y;
point(double _x, double _y) {

x = _x, y = _y;
}

point operator+(const point &oth){
return point(x + oth.x, y + oth.y);

}

point operator-(const point &oth){
return point(x - oth.x, y - oth.y);

}
};
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Points and vectors

…or we could use the complex<double> class.
typedef complex<double> point;

The complex class in C++ and Java has methods defined
for

▶ Addition
▶ Subtraction
▶ Multiplication by a scalar
▶ Length
▶ Trigonometric functions
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Points and vectors

Complex numbers have the real part and the imaginary
part. Can be thought of as vectors or points on the
complex plane.

▶ double real(p) returns the real part, or in our case,
the x value of p

▶ double imag(p) returns the imaginary part, y value of
p.

▶ double abs(p) returns the absolute value of the
complex number, the length of the vector.

▶ double sin(p), double cos(p), double tan(p),
trigonometric functions.
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Lines and line segments

p0

p1p1 − p0p1 − p0

▶ Line segments are
represented by a pair of
points, ((x0, y0), (x1, y1)).

▶ Distance between two
points is the length of the
line segment or vector
between the points.

d((x0,y0), (x1, y1))
= |(x1 − x0, y1 − y0)|
=

√
(x1 − x0)2 + (y1 − y0)2
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Lines and line segments

struct point {
...
double distance(point oth = point(0,0)) const {

return sqrt(pow(x - oth.x, 2.0)
+ pow(y - oth.y, 2.0));

}
...

}

Or use the abs function with complex<double>.
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Lines and line segments

q1

p1

q0

p0

p1

p0

r⃗0

r⃗1

▶ Line representation same as
line segments.

▶ Treat them as lines passing
through the two points.

▶ Or as a point and a direction
vector.

p+ t · r⃗

▶ Either way
pair<point,point>
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Circles

p0
p1

r0
r1

▶ Circles are very easy to
represent.

▶ Center point p = (x, y).
▶ And the radius r.
pair<point,double>
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Dot product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the dot product of u⃗ and v⃗ is defined as(

x0
y0

)
·
(
x1
y1

)
= x0 · x1 + y0 · y1

Which in geometric terms is

u⃗ · v⃗ = |⃗u||⃗v| cos θ

12



Dot product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the dot product of u⃗ and v⃗ is defined as(

x0
y0

)
·
(
x1
y1

)
= x0 · x1 + y0 · y1

Which in geometric terms is

u⃗ · v⃗ = |⃗u||⃗v| cos θ

12



Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ Allows us to calculate the
angle between u⃗ and v⃗.

θ = arccos
(
u⃗ · v⃗
|⃗u||⃗v|

)

13



Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ Allows us to calculate the
angle between u⃗ and v⃗.

θ = arccos
(
u⃗ · v⃗
|⃗u||⃗v|

)
▶ And the projection of v⃗ onto u⃗.

v⃗u⃗ =
(
u⃗ · v⃗
|u|

)
u⃗
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Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ The closest point on u⃗ to p is
q.
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Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ The closest point on u⃗ to p is
q.

▶ The distance from p to u⃗ is the
distance from p to q.

▶ Unless q is outside u⃗, then the
closest point is either of the
endpoints.
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Dot product

Rest of the code will use the complex class.
#define P(p) const point &p
#define L(p0, p1) P(p0), P(p1)
double dot(P(a), P(b)) {

return real(a) * real(b) + imag(a) * imag(b);
}
double angle(P(a), P(b), P(c)) {

return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b));
}
point closest_point(L(a, b), P(c), bool segment = false) {

if (segment) {
if (dot(b - a, c - b) > 0) return b;
if (dot(a - b, c - a) > 0) return a;

}
double t = dot(c - a, b - a) / norm(b - a);
return a + t * (b - a);

}
14



Cross product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the cross product of u⃗ and v⃗ is defined as∣∣∣∣(x0y0

)
×
(
x1
y1

)∣∣∣∣ = x0 · y1 − y0 · x1

Which in geometric terms is

|⃗u× v⃗| = |⃗u||⃗v| sin θ
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Cross product

u⃗

v⃗

θ

1
2
|⃗u× v⃗|

u⃗

v⃗

θ

▶ Allows us to calculate the area
of the triangle formed by u⃗
and v⃗.

|⃗u× v⃗|
2

▶ And can tell us if the angle
between u⃗ and v⃗ is positive or
negative.

|⃗u× v⃗| < 0 iff θ < π

|⃗u× v⃗| = 0 iff θ = π

|⃗u× v⃗| > 0 iff θ > π
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Counterclockwise

A

B

C

v⃗

u⃗

+−

u⃗

v⃗
v⃗

u⃗

A

B

C

▶ Given three points A, B and C, we
want to know if they form a
counter-clockwise angle in that
order.

A → B → C
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Counterclockwise

A

B

C

v⃗

u⃗

+

−

u⃗

v⃗
v⃗

u⃗

A

B

C

▶ Given three points A, B and C, we
want to know if they form a
counter-clockwise angle in that
order.

A → B → C
▶ We can examine the cross product
of and the area of the triangle
formed by

u⃗ = B− C v⃗ = B− A
u⃗× v⃗ > 0
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Counterclockwise

A

B

C

v⃗

u⃗

+

−

u⃗

v⃗

v⃗

u⃗

A

B

C

▶ The points in the reverse order do
not form a counter clockwise angle.

C → B → A

▶ In the reverse order the vectors
swap places

u⃗ = B− A v⃗ = B− C
u⃗× v⃗ < 0
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Counterclockwise

A

B

C

v⃗

u⃗

+−

u⃗

v⃗

v⃗

u⃗

A

B

C
▶ The points in the reverse order do
not form a counter clockwise angle.

C → B → A

▶ In the reverse order the vectors
swap places

u⃗ = B− A v⃗ = B− C
u⃗× v⃗ < 0

▶ If the points A, B and C are on the
same line, then the area will be 0.
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Counterclockwise

double cross(P(a), P(b)) {
return real(a)*imag(b) - imag(a)*real(x);

}
double ccw(P(a), P(b), P(c)) {

return cross(b - a, c - b);
}
bool collinear(P(a), P(b), P(c)) {

return abs(ccw(a, b, c)) < EPS;
}
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Intersections
Very common task is to find the intersection of two lines or
line segments.

▶ Given a pair of points (x0, y0), (x1, y1), representing a
line we want to start by obtaining the form
Ax+ By = C.

▶ We can do so by setting

A = y1 − y0
B = x0 − x1
C = A · x0 + B · y1

▶ If we have two lines given by such equations, we
simply need to solve for the two unknowns, x and y.
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Intersections
For two lines

A0x+ B0y = C0

A1x+ B1y = C1

The intersection point is

x =
(B1 · C0 − B0 · C1)

D
y =

(A0 · C1 − A1 · C0)

D

Where
D = A0 · B1 − A1 · B0

20



Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

21
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Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

▶ If d > r0 + r1 the circles do
not intersect.

▶ If d < |r0 − r1|, one circles is
contained within the other.

▶ If d = 0 and r0 = r1, the
circles are the same.

▶ Let’s look at the last case.
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Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B

d

h

a b

▶ We can solve for the vectors
a and h from the equations

a2 + h2 = r20 b2 + h2 = r21

▶ We get

a =
r2A − r2B + d2)

2 · d

h2 = r2A − a2
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Intersections
#define C(p, r) const point &p, double r
int intersect(C(A, rA), C(B, rB), point & res1, point & res2) {

double d = abs(B - A);
if ( rA + rB < d - EPS || d < abs(rA - rB) - EPS){
return 0;

}
double a = (rA*rA - rB*rB + d*d) / 2*d;
double h = sqrt(rA*rA - a*a);
point v = normalize(B - A, a);
u = normalize(rotate(B-A), h);
res1 = A + v + u;
res2 = A + v - u;
if (abs(u) < EPS){

return 1;
}
return 2;

}
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Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.
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Polygons

double polygon_area_signed(const vector<point> &p) {
double area = 0;
int cnt = size(p);
for (int i = 1; i + 1 < cnt; i++){

area += cross(p[i] - p[0], p[i + 1] - p[0])/2;
}
return area;

}
double polygon_area(vector<point> &p) {

return abs(polygon_area_signed(p));
}
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Convex hull
▶ Given a set of points, we want to find the convex hull
of the points.

▶ The convex hull of points can be visualized as the
shape formed by a rubber band around the set of
points.
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Convex hull

Graham scan:

▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).
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Convex hull
point hull[MAXN];
int convex_hull(vector<point> p) {

int n = size(p), l = 0;
sort(p.begin(), p.end(), cmp);
for (int i = 0; i < n; i++) {

if (i > 0 && p[i] == p[i - 1])
continue;

while (l >= 2 && ccw(hull[l - 2], hull[l - 1], p[i]) >= 0)
l--;

hull[l++] = p[i];
}
int r = l;
for (int i = n - 2; i >= 0; i--) {

if (p[i] == p[i + 1])
continue;

while (r - l >= 1 && ccw(hull[r - 2], hull[r - 1], p[i]) >= 0)
r--;

hull[r++] = p[i];
}
return l == 1 ? 1 : r - 1;

}
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Convex hull

Many other algorithms exist

▶ Gift wrapping aka Jarvis march.
▶ Quick hull, similar idea to quicksort.
▶ Divide and conquer.

Some can be extended to three dimensions, or higher.
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Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.
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Point in concave polygon

How about non convex polygon?

▶ The even-odd rule algorithm.
▶ We examine a ray passing through the polygon to the
point.

▶ If the ray crosses the boundary of the polygon, then it
alternately goes from outside to inside, and outside to
inside.
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Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32



Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.
▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.
▶ Find the smallest distance among the pair of points
which lie on different sides of the line.
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Closest pair of points

Takk fyrir önnina!

Gangi ykkur vel og góða skemmtun í prófinu á morgun!
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