
Geometry

Tómas Ken Magnússon
Bjarki Ágúst Guðmundsson

School of Computer Science
Reykjavík University

Árangursrík forritun og lausn verkefna

http://ru.is/td
http://ru.is

Today we’re going to cover

▶ Geometry
▶ Computational geometry

2

Points and vectors

(3, 6)

(6, 3)

(1, 3)

▶ Points are represented
by a pair of numbers,
(x, y).

▶ Vectors are represented
in the same way.

▶ Thinking of points as
vectors us to do many
things.

3

Points and vectors

(3, 6)

(6, 3)

(1, 3)

▶ Points are represented
by a pair of numbers,
(x, y).

▶ Vectors are represented
in the same way.

▶ Thinking of points as
vectors us to do many
things.

3

Points and vectors

(3, 6)

(6, 3)

(1, 3)

▶ Points are represented
by a pair of numbers,
(x, y).

▶ Vectors are represented
in the same way.

▶ Thinking of points as
vectors us to do many
things.

3

Points and vectors

u⃗
v⃗

u⃗+ v⃗

u⃗− v⃗

▶ Simplest operation,
addition is defined as(
x0
y0

)
+

(
x1
y1

)
=

(
x0 + x1
y0 + y1

)

▶ Subtraction is defined in
the same manner(
x0
y0

)
−
(
x1
y1

)
=

(
x0 − x1
y0 − y1

)

4

Points and vectors

u⃗
v⃗

u⃗+ v⃗

u⃗− v⃗

▶ Simplest operation,
addition is defined as(
x0
y0

)
+

(
x1
y1

)
=

(
x0 + x1
y0 + y1

)

▶ Subtraction is defined in
the same manner(
x0
y0

)
−
(
x1
y1

)
=

(
x0 − x1
y0 − y1

)

4

Points and vectors

u⃗
v⃗

u⃗+ v⃗

u⃗− v⃗

▶ Simplest operation,
addition is defined as(
x0
y0

)
+

(
x1
y1

)
=

(
x0 + x1
y0 + y1

)

▶ Subtraction is defined in
the same manner(
x0
y0

)
−
(
x1
y1

)
=

(
x0 − x1
y0 − y1

)

4

Points and vectors

u⃗
v⃗

u⃗+ v⃗

u⃗− v⃗

▶ Simplest operation,
addition is defined as(
x0
y0

)
+

(
x1
y1

)
=

(
x0 + x1
y0 + y1

)

▶ Subtraction is defined in
the same manner(
x0
y0

)
−
(
x1
y1

)
=

(
x0 − x1
y0 − y1

)

4

Points and vectors

u⃗
v⃗

u⃗+ v⃗

u⃗− v⃗

▶ Simplest operation,
addition is defined as(
x0
y0

)
+

(
x1
y1

)
=

(
x0 + x1
y0 + y1

)

▶ Subtraction is defined in
the same manner(
x0
y0

)
−
(
x1
y1

)
=

(
x0 − x1
y0 − y1

)

4

Points and vectors
struct point {

double x, y;
point(double _x, double _y) {

x = _x, y = _y;
}

point operator+(const point &oth){
return point(x + oth.x, y + oth.y);

}

point operator-(const point &oth){
return point(x - oth.x, y - oth.y);

}
};

5

Points and vectors

…or we could use the complex<double> class.
typedef complex<double> point;

The complex class in C++ and Java has methods defined
for

▶ Addition
▶ Subtraction
▶ Multiplication by a scalar
▶ Length
▶ Trigonometric functions

6

Points and vectors

…or we could use the complex<double> class.
typedef complex<double> point;

The complex class in C++ and Java has methods defined
for

▶ Addition
▶ Subtraction
▶ Multiplication by a scalar
▶ Length
▶ Trigonometric functions

6

Points and vectors

Complex numbers have the real part and the imaginary
part. Can be thought of as vectors or points on the
complex plane.

▶ double real(p) returns the real part, or in our case,
the x value of p

▶ double imag(p) returns the imaginary part, y value of
p.

▶ double abs(p) returns the absolute value of the
complex number, the length of the vector.

▶ double sin(p), double cos(p), double tan(p),
trigonometric functions.

7

Points and vectors

Complex numbers have the real part and the imaginary
part. Can be thought of as vectors or points on the
complex plane.

▶ double real(p) returns the real part, or in our case,
the x value of p

▶ double imag(p) returns the imaginary part, y value of
p.

▶ double abs(p) returns the absolute value of the
complex number, the length of the vector.

▶ double sin(p), double cos(p), double tan(p),
trigonometric functions.

7

Points and vectors

Complex numbers have the real part and the imaginary
part. Can be thought of as vectors or points on the
complex plane.

▶ double real(p) returns the real part, or in our case,
the x value of p

▶ double imag(p) returns the imaginary part, y value of
p.

▶ double abs(p) returns the absolute value of the
complex number, the length of the vector.

▶ double sin(p), double cos(p), double tan(p),
trigonometric functions.

7

Points and vectors

Complex numbers have the real part and the imaginary
part. Can be thought of as vectors or points on the
complex plane.

▶ double real(p) returns the real part, or in our case,
the x value of p

▶ double imag(p) returns the imaginary part, y value of
p.

▶ double abs(p) returns the absolute value of the
complex number, the length of the vector.

▶ double sin(p), double cos(p), double tan(p),
trigonometric functions.

7

Points and vectors

Complex numbers have the real part and the imaginary
part. Can be thought of as vectors or points on the
complex plane.

▶ double real(p) returns the real part, or in our case,
the x value of p

▶ double imag(p) returns the imaginary part, y value of
p.

▶ double abs(p) returns the absolute value of the
complex number, the length of the vector.

▶ double sin(p), double cos(p), double tan(p),
trigonometric functions.

7

Lines and line segments

p0

p1p1 − p0p1 − p0

▶ Line segments are
represented by a pair of
points, ((x0, y0), (x1, y1)).

▶ Distance between two
points is the length of the
line segment or vector
between the points.

d((x0,y0), (x1, y1))
= |(x1 − x0, y1 − y0)|
=

√
(x1 − x0)2 + (y1 − y0)2

8

Lines and line segments

p0

p1p1 − p0

p1 − p0

▶ Line segments are
represented by a pair of
points, ((x0, y0), (x1, y1)).

▶ Distance between two
points is the length of the
line segment or vector
between the points.

d((x0,y0), (x1, y1))
= |(x1 − x0, y1 − y0)|
=

√
(x1 − x0)2 + (y1 − y0)2

8

Lines and line segments

p0

p1p1 − p0

p1 − p0

▶ Line segments are
represented by a pair of
points, ((x0, y0), (x1, y1)).

▶ Distance between two
points is the length of the
line segment or vector
between the points.

d((x0,y0), (x1, y1))
= |(x1 − x0, y1 − y0)|
=

√
(x1 − x0)2 + (y1 − y0)2

8

Lines and line segments

struct point {
...
double distance(point oth = point(0,0)) const {

return sqrt(pow(x - oth.x, 2.0)
+ pow(y - oth.y, 2.0));

}
...

}

Or use the abs function with complex<double>.

9

Lines and line segments

struct point {
...
double distance(point oth = point(0,0)) const {

return sqrt(pow(x - oth.x, 2.0)
+ pow(y - oth.y, 2.0));

}
...

}

Or use the abs function with complex<double>.

9

Lines and line segments

q1

p1

q0

p0

p1

p0

r⃗0

r⃗1

▶ Line representation same as
line segments.

▶ Treat them as lines passing
through the two points.

▶ Or as a point and a direction
vector.

p+ t · r⃗

▶ Either way
pair<point,point>

10

Lines and line segments

q1

p1

q0

p0

p1

p0

r⃗0

r⃗1

▶ Line representation same as
line segments.

▶ Treat them as lines passing
through the two points.

▶ Or as a point and a direction
vector.

p+ t · r⃗

▶ Either way
pair<point,point>

10

Lines and line segments

q1

p1

q0

p0

p1

p0

r⃗0

r⃗1

▶ Line representation same as
line segments.

▶ Treat them as lines passing
through the two points.

▶ Or as a point and a direction
vector.

p+ t · r⃗

▶ Either way
pair<point,point>

10

Lines and line segments

q1

p1

q0

p0

p1

p0

r⃗0

r⃗1

▶ Line representation same as
line segments.

▶ Treat them as lines passing
through the two points.

▶ Or as a point and a direction
vector.

p+ t · r⃗

▶ Either way
pair<point,point>

10

Circles

p0
p1

r0
r1

▶ Circles are very easy to
represent.

▶ Center point p = (x, y).
▶ And the radius r.
pair<point,double>

11

Circles

p0
p1

r0
r1

▶ Circles are very easy to
represent.

▶ Center point p = (x, y).

▶ And the radius r.
pair<point,double>

11

Circles

p0
p1

r0
r1

▶ Circles are very easy to
represent.

▶ Center point p = (x, y).
▶ And the radius r.

pair<point,double>

11

Circles

p0
p1

r0
r1

▶ Circles are very easy to
represent.

▶ Center point p = (x, y).
▶ And the radius r.
pair<point,double>

11

Dot product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the dot product of u⃗ and v⃗ is defined as(

x0
y0

)
·
(
x1
y1

)
= x0 · x1 + y0 · y1

Which in geometric terms is

u⃗ · v⃗ = |⃗u||⃗v| cos θ

12

Dot product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the dot product of u⃗ and v⃗ is defined as(

x0
y0

)
·
(
x1
y1

)
= x0 · x1 + y0 · y1

Which in geometric terms is

u⃗ · v⃗ = |⃗u||⃗v| cos θ

12

Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ Allows us to calculate the
angle between u⃗ and v⃗.

θ = arccos
(
u⃗ · v⃗
|⃗u||⃗v|

)

13

Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ Allows us to calculate the
angle between u⃗ and v⃗.

θ = arccos
(
u⃗ · v⃗
|⃗u||⃗v|

)
▶ And the projection of v⃗ onto u⃗.

v⃗u⃗ =
(
u⃗ · v⃗
|u|

)
u⃗

13

Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ The closest point on u⃗ to p is
q.

13

Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ The closest point on u⃗ to p is
q.

▶ The distance from p to u⃗ is the
distance from p to q.

13

Dot product

u⃗

v⃗

θ

v⃗u⃗

p

q

▶ The closest point on u⃗ to p is
q.

▶ The distance from p to u⃗ is the
distance from p to q.

▶ Unless q is outside u⃗, then the
closest point is either of the
endpoints.

13

Dot product

Rest of the code will use the complex class.
#define P(p) const point &p
#define L(p0, p1) P(p0), P(p1)
double dot(P(a), P(b)) {

return real(a) * real(b) + imag(a) * imag(b);
}
double angle(P(a), P(b), P(c)) {

return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b));
}
point closest_point(L(a, b), P(c), bool segment = false) {

if (segment) {
if (dot(b - a, c - b) > 0) return b;
if (dot(a - b, c - a) > 0) return a;

}
double t = dot(c - a, b - a) / norm(b - a);
return a + t * (b - a);

}
14

Cross product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the cross product of u⃗ and v⃗ is defined as∣∣∣∣(x0y0

)
×
(
x1
y1

)∣∣∣∣ = x0 · y1 − y0 · x1

Which in geometric terms is

|⃗u× v⃗| = |⃗u||⃗v| sin θ

15

Cross product

Given two vectors

u⃗ =

(
x0
y0

)
v⃗ =

(
x1
y1

)
the cross product of u⃗ and v⃗ is defined as∣∣∣∣(x0y0

)
×
(
x1
y1

)∣∣∣∣ = x0 · y1 − y0 · x1

Which in geometric terms is

|⃗u× v⃗| = |⃗u||⃗v| sin θ

15

Cross product

u⃗

v⃗

θ

1
2
|⃗u× v⃗|

u⃗

v⃗

θ

▶ Allows us to calculate the area
of the triangle formed by u⃗
and v⃗.

|⃗u× v⃗|
2

▶ And can tell us if the angle
between u⃗ and v⃗ is positive or
negative.

|⃗u× v⃗| < 0 iff θ < π

|⃗u× v⃗| = 0 iff θ = π

|⃗u× v⃗| > 0 iff θ > π

16

Cross product

u⃗

v⃗

θ
1
2
|⃗u× v⃗|

u⃗

v⃗

θ

▶ Allows us to calculate the area
of the triangle formed by u⃗
and v⃗.

|⃗u× v⃗|
2

▶ And can tell us if the angle
between u⃗ and v⃗ is positive or
negative.

|⃗u× v⃗| < 0 iff θ < π

|⃗u× v⃗| = 0 iff θ = π

|⃗u× v⃗| > 0 iff θ > π

16

Cross product

u⃗

v⃗

θ
1
2
|⃗u× v⃗|

u⃗

v⃗

θ

▶ Allows us to calculate the area
of the triangle formed by u⃗
and v⃗.

|⃗u× v⃗|
2

▶ And can tell us if the angle
between u⃗ and v⃗ is positive or
negative.

|⃗u× v⃗| < 0 iff θ < π

|⃗u× v⃗| = 0 iff θ = π

|⃗u× v⃗| > 0 iff θ > π

16

Counterclockwise

A

B

C

v⃗

u⃗

+−

u⃗

v⃗
v⃗

u⃗

A

B

C

▶ Given three points A, B and C, we
want to know if they form a
counter-clockwise angle in that
order.

A → B → C

17

Counterclockwise

A

B

C

v⃗

u⃗

+

−

u⃗

v⃗
v⃗

u⃗

A

B

C

▶ Given three points A, B and C, we
want to know if they form a
counter-clockwise angle in that
order.

A → B → C
▶ We can examine the cross product
of and the area of the triangle
formed by

u⃗ = B− C v⃗ = B− A
u⃗× v⃗ > 0

17

Counterclockwise

A

B

C

v⃗

u⃗

+

−

u⃗

v⃗

v⃗

u⃗

A

B

C

▶ The points in the reverse order do
not form a counter clockwise angle.

C → B → A

▶ In the reverse order the vectors
swap places

u⃗ = B− A v⃗ = B− C
u⃗× v⃗ < 0

17

Counterclockwise

A

B

C

v⃗

u⃗

+−

u⃗

v⃗

v⃗

u⃗

A

B

C
▶ The points in the reverse order do
not form a counter clockwise angle.

C → B → A

▶ In the reverse order the vectors
swap places

u⃗ = B− A v⃗ = B− C
u⃗× v⃗ < 0

▶ If the points A, B and C are on the
same line, then the area will be 0.

17

Counterclockwise

double cross(P(a), P(b)) {
return real(a)*imag(b) - imag(a)*real(x);

}
double ccw(P(a), P(b), P(c)) {

return cross(b - a, c - b);
}
bool collinear(P(a), P(b), P(c)) {

return abs(ccw(a, b, c)) < EPS;
}

18

Intersections
Very common task is to find the intersection of two lines or
line segments.

▶ Given a pair of points (x0, y0), (x1, y1), representing a
line we want to start by obtaining the form
Ax+ By = C.

▶ We can do so by setting

A = y1 − y0
B = x0 − x1
C = A · x0 + B · y1

▶ If we have two lines given by such equations, we
simply need to solve for the two unknowns, x and y.

19

Intersections
Very common task is to find the intersection of two lines or
line segments.

▶ Given a pair of points (x0, y0), (x1, y1), representing a
line we want to start by obtaining the form
Ax+ By = C.

▶ We can do so by setting

A = y1 − y0
B = x0 − x1
C = A · x0 + B · y1

▶ If we have two lines given by such equations, we
simply need to solve for the two unknowns, x and y.

19

Intersections
Very common task is to find the intersection of two lines or
line segments.

▶ Given a pair of points (x0, y0), (x1, y1), representing a
line we want to start by obtaining the form
Ax+ By = C.

▶ We can do so by setting

A = y1 − y0
B = x0 − x1
C = A · x0 + B · y1

▶ If we have two lines given by such equations, we
simply need to solve for the two unknowns, x and y.

19

Intersections
Very common task is to find the intersection of two lines or
line segments.

▶ Given a pair of points (x0, y0), (x1, y1), representing a
line we want to start by obtaining the form
Ax+ By = C.

▶ We can do so by setting

A = y1 − y0
B = x0 − x1
C = A · x0 + B · y1

▶ If we have two lines given by such equations, we
simply need to solve for the two unknowns, x and y.

19

Intersections
For two lines

A0x+ B0y = C0

A1x+ B1y = C1

The intersection point is

x =
(B1 · C0 − B0 · C1)

D
y =

(A0 · C1 − A1 · C0)

D

Where
D = A0 · B1 − A1 · B0

20

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

21

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

▶ If d > r0 + r1 the circles do
not intersect.

▶ If d < |r0 − r1|, one circles is
contained within the other.

▶ If d = 0 and r0 = r1, the
circles are the same.

▶ Let’s look at the last case.

21

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

▶ If d > r0 + r1 the circles do
not intersect.

▶ If d < |r0 − r1|, one circles is
contained within the other.

▶ If d = 0 and r0 = r1, the
circles are the same.

▶ Let’s look at the last case.

21

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

▶ If d > r0 + r1 the circles do
not intersect.

▶ If d < |r0 − r1|, one circles is
contained within the other.

▶ If d = 0 and r0 = r1, the
circles are the same.

▶ Let’s look at the last case.

21

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B
d

h

a b

▶ If d > r0 + r1 the circles do
not intersect.

▶ If d < |r0 − r1|, one circles is
contained within the other.

▶ If d = 0 and r0 = r1, the
circles are the same.

▶ Let’s look at the last case.

21

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B

d

h

a b

▶ We can solve for the vectors
a and h from the equations

a2 + h2 = r20 b2 + h2 = r21

▶ We get

a =
r2A − r2B + d2)

2 · d

h2 = r2A − a2

21

Intersections
Quite similar problem is to find the intersections of two
circles.

rA rB

A B

d

h

a b

▶ We can solve for the vectors
a and h from the equations

a2 + h2 = r20 b2 + h2 = r21

▶ We get

a =
r2A − r2B + d2)

2 · d

h2 = r2A − a2

21

Intersections
#define C(p, r) const point &p, double r
int intersect(C(A, rA), C(B, rB), point & res1, point & res2) {

double d = abs(B - A);
if (rA + rB < d - EPS || d < abs(rA - rB) - EPS){
return 0;

}
double a = (rA*rA - rB*rB + d*d) / 2*d;
double h = sqrt(rA*rA - a*a);
point v = normalize(B - A, a);
u = normalize(rotate(B-A), h);
res1 = A + v + u;
res2 = A + v - u;
if (abs(u) < EPS){

return 1;
}
return 2;

}

22

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area

– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.

– Go through all the other
adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

▶ Polygons are represented by
a list of points in the order
representing the edges.

▶ To calculate the area
– We pick one starting point.
– Go through all the other

adjacent pair of points and sum
the area of the triangulation.

– Even if we sum up area outside
the polygon, due to the cross
product, it is subtracted later.

23

Polygons

double polygon_area_signed(const vector<point> &p) {
double area = 0;
int cnt = size(p);
for (int i = 1; i + 1 < cnt; i++){

area += cross(p[i] - p[0], p[i + 1] - p[0])/2;
}
return area;

}
double polygon_area(vector<point> &p) {

return abs(polygon_area_signed(p));
}

24

Convex hull
▶ Given a set of points, we want to find the convex hull
of the points.

▶ The convex hull of points can be visualized as the
shape formed by a rubber band around the set of
points.

25

Convex hull
▶ Given a set of points, we want to find the convex hull
of the points.

▶ The convex hull of points can be visualized as the
shape formed by a rubber band around the set of
points.

25

Convex hull
▶ Given a set of points, we want to find the convex hull
of the points.

▶ The convex hull of points can be visualized as the
shape formed by a rubber band around the set of
points.

25

Convex hull
▶ Given a set of points, we want to find the convex hull
of the points.

▶ The convex hull of points can be visualized as the
shape formed by a rubber band around the set of
points.

25

Convex hull

Graham scan:

▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).

26

Convex hull

Graham scan:
▶ Pick the point p0 with the lowest y coordinate.

▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).

26

Convex hull

Graham scan:
▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.

▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).

26

Convex hull

Graham scan:
▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points

▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).

26

Convex hull

Graham scan:
▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).

26

Convex hull

Graham scan:
▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.

Time complexity O(N logN).

26

Convex hull

Graham scan:
▶ Pick the point p0 with the lowest y coordinate.
▶ Sort all the points by polar angle with p0.
▶ Iterate through all the points
▶ If the current point forms a clockwise angle with the
last two points, remove last point from the convex set.

▶ Otherwise, add the current point to the convex set.
Time complexity O(N logN).

26

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull

p0
1

2

3

7

5

11

4

8
6

9

12
10

27

Convex hull
point hull[MAXN];
int convex_hull(vector<point> p) {

int n = size(p), l = 0;
sort(p.begin(), p.end(), cmp);
for (int i = 0; i < n; i++) {

if (i > 0 && p[i] == p[i - 1])
continue;

while (l >= 2 && ccw(hull[l - 2], hull[l - 1], p[i]) >= 0)
l--;

hull[l++] = p[i];
}
int r = l;
for (int i = n - 2; i >= 0; i--) {

if (p[i] == p[i + 1])
continue;

while (r - l >= 1 && ccw(hull[r - 2], hull[r - 1], p[i]) >= 0)
r--;

hull[r++] = p[i];
}
return l == 1 ? 1 : r - 1;

}

28

Convex hull

Many other algorithms exist

▶ Gift wrapping aka Jarvis march.
▶ Quick hull, similar idea to quicksort.
▶ Divide and conquer.

Some can be extended to three dimensions, or higher.

29

Convex hull

Many other algorithms exist
▶ Gift wrapping aka Jarvis march.

▶ Quick hull, similar idea to quicksort.
▶ Divide and conquer.

Some can be extended to three dimensions, or higher.

29

Convex hull

Many other algorithms exist
▶ Gift wrapping aka Jarvis march.
▶ Quick hull, similar idea to quicksort.

▶ Divide and conquer.
Some can be extended to three dimensions, or higher.

29

Convex hull

Many other algorithms exist
▶ Gift wrapping aka Jarvis march.
▶ Quick hull, similar idea to quicksort.
▶ Divide and conquer.

Some can be extended to three dimensions, or higher.

29

Convex hull

Many other algorithms exist
▶ Gift wrapping aka Jarvis march.
▶ Quick hull, similar idea to quicksort.
▶ Divide and conquer.

Some can be extended to three dimensions, or higher.

29

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in convex polygon
Simple algorithm to check if a point is in a convex polygon.

▶ We start by calculating the
area of the polygon.

▶ To check if our point is
contained in the polygon we
sum up the area of the
triangles formed the point
and every two adjacent
points.

▶ The total area of the triangles
is equal to the area of the
polygon iff the point is inside
the polygon.

30

Point in concave polygon

How about non convex polygon?

▶ The even-odd rule algorithm.
▶ We examine a ray passing through the polygon to the
point.

▶ If the ray crosses the boundary of the polygon, then it
alternately goes from outside to inside, and outside to
inside.

31

Point in concave polygon

How about non convex polygon?
▶ The even-odd rule algorithm.

▶ We examine a ray passing through the polygon to the
point.

▶ If the ray crosses the boundary of the polygon, then it
alternately goes from outside to inside, and outside to
inside.

31

Point in concave polygon

How about non convex polygon?
▶ The even-odd rule algorithm.
▶ We examine a ray passing through the polygon to the
point.

▶ If the ray crosses the boundary of the polygon, then it
alternately goes from outside to inside, and outside to
inside.

31

Point in concave polygon

How about non convex polygon?
▶ The even-odd rule algorithm.
▶ We examine a ray passing through the polygon to the
point.

▶ If the ray crosses the boundary of the polygon, then it
alternately goes from outside to inside, and outside to
inside.

31

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Point in concave polygon

▶ Ray from the outside of
the polygon to the point.

▶ Count the number of
intersection points.

▶ If odd, then the point is
inside the polygon.

▶ If even, then the point is
outside the polygon.

▶ Does not matter which
ray we pick.

32

Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.
▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.
▶ Find the smallest distance among the pair of points
which lie on different sides of the line.

33

Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.

▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.
▶ Find the smallest distance among the pair of points
which lie on different sides of the line.

33

Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.
▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.
▶ Find the smallest distance among the pair of points
which lie on different sides of the line.

33

Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.
▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.
▶ Find the smallest distance among the pair of points
which lie on different sides of the line.

33

Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.
▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.

▶ Find the smallest distance among the pair of points
which lie on different sides of the line.

33

Closest pair of points

Given a set of points, we want to find the pair of points
with the smallest distance between them.
Divide and conquer algorithm;

▶ Sort points by the x-coordinate.
▶ Split the set into two equal sized sets by the vertical
line of the medial x value.

▶ Solve the problem recursively in the left and right
subset.

▶ Sort the two subsets by the y-coordinate.
▶ Find the smallest distance among the pair of points
which lie on different sides of the line.

33

Closest pair of points

Takk fyrir önnina!

Gangi ykkur vel og góða skemmtun í prófinu á morgun!

34

	Geometry
	Points and vectors
	Lines and line segments
	Circles
	Dot product
	Cross product
	Counterclockwise
	Intersections
	Polygons
	Convex hull
	Point in convex polygon
	Point in concave polygon
	Closest pair of points

